Границы применения физических законов и теорий

admin

Границы применимости физических законов и теорий

Все физические законы и теории являются приближением к действительности, поскольку при построении теорий используется определенная модель явлений и процессов. Поэтому как законы, так и теории имеют определенные границы применимости.

Второй пример: поведение мельчайших частиц вещества — так называемых элементарных частиц, а также строение атома не могут быть поняты в рамках классической механики: оказалось, что явления, происходящие на очень малых расстояниях и в очень короткие промежутки времени, находятся вне границ ее применимости. И в начале 20-го века для объяснения атомных явлений трудами нескольких ученых была создана квантовая механика.

fizikaklass.ru

Рабочая программа по физике 11класс (Авторская программа Г. Я. Мякишева) базовый уровень пояснительная записка

М К О У Д о к у ч а е в с к а я С О Ш

Рассмотрел Согласовал Утвердил

Педагогический председатель директор

совет методического школы

совета Лазарева Т.И.

РАБОЧАЯ ПРОГРАММА ПО ФИЗИКЕ
11КЛАСС
(Авторская программа Г. Я. Мякишева)
БАЗОВЫЙ УРОВЕНЬ
Пояснительная записка
Рабочая программа по физике ориентированная на учебники Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. «Физика 11»

68 часов –2 часа в неделю

Пояснительная записка

Значение физики в школьном образовании определяется ролью физической науки в жизни современного общества, ее влиянием на темпы развития научно-технического прогресса. Обучение физике вносит вклад в политехническую подготовку путем ознакомления учащихся с главными направлениями научно-технического прогресса, физическими основами работы приборов, технических устройств, технологических установок.

В задачи обучения физике входит:

— развитие мышления учащихся, формирование у них умений самостоятельно приобретать и применять знания, наблюдать и объяснять физические явления;

— овладение школьными знаниями об экспериментальных фактах, понятиях, законах, теориях, методах физической науки; о современной научной картине мира; о широких возможностях применения физических законов в технике и технологии;

— усвоение школьниками идей единства строения материи и неисчерпаемости процесса ее познания, понимание роли практики в познании, диалектического, характера физических явлений и законов;

— формирование познавательного интереса к физике и технике, развитие творческих способностей, осознанных мотивов учения; подготовка к продолжению образования и сознательному выбору профессии.

При изучении физических теорий, мировоззренческой интерпретации законов формируются знания учащихся о современной научной картине мира. Воспитанию учащихся служат сведения о перспективах развития физики и техники, о роли физики в ускорении научно-технического прогресса.

Данная рабочая программа, тематического и поурочного планирования изучения физики в 10 -11 общеобразовательных классах составлена на основе программы Г.Я. Мякишева для общеобразовательных учреждений. Изучение учебного материала предполагает использование учебника Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. «Физика-10», Мякишев Г.Я., Буховцев Б.Б. «Физика 11».

Изучение физики связано с изучением математики, химии, биологии.

Знания материала по физике атомного ядра формируются с использованием знаний о периодической системе элементов Д. И. Менделеева, изотопах и составе атомных ядер (химия); о мутационном воздействии ионизирующей радиации (биология).

Базовый уровень изучения физики ориентирован на формирование общей культуры и в большей степени связан с мировоззренческими, воспитательными и развивающими задачами общего образования, задачами социализации.

Рабочая программа и поурочное планирование включает в себя основные вопросы курса физики 10 — 11 классов предусмотренных соответствующими разделами Государственного образовательного стандарта по физике.

Основной материал включен в каждый раздел курса, требует глубокого и прочного усвоения, которое следует добиваться, не загружая память учащихся множеством частых фактов. Таким основным материалом являются для всего курса физики законы сохранения (энергии, импульса, электрического заряда); для механики — идеи относительности движения, основные понятия кинематики, законы Ньютона; для молекулярной физики — основные положения молекулярно-кинетической теории, основное уравнение молекулярно-кинетической теории идеального газа, первый закон термодинамики; для электродинамики — учение об электрическом поле, электронная теория, закон Кулон, Ома и Ампера, явление электромагнитной индукции; для квантово физики — квантовые свойства сета, квантовые постулаты Бора, закон взаимосвязи массы и энергии. В основной материал также входят важнейшие следствия из законов и теорий, их практическое применение. Изучение физических теорий, мировоззренческая интерпретация законов формируют знания учащихся о современной научной картине мира.

Изучение школьного курса физики должно отражать теоретико-познавательные аспекты учебного материла — границы применимости физических теорий и соотношения между теориями различной степени общности, роль опыта в физике как источника знаний и критерия правильности теорий. Воспитанию учащихся служат сведения о перспективах развития физики и техники, о роли физики в ускорении научно-технического прогресса, из истории развития науки (молекулярно-кинетической теории, учения о полях, взглядов на природу света и строение вещества).

Наглядность преподавания физики и создание условий наилучшего понимания учащимися физической сущности изучаемого материала возможно через применение демонстрационного эксперимента. Перечень демонстраций необходимых для организации наглядности учебного процесса по каждому разделу указан в программе. У большинства учащихся дома в личном пользовании имеют компьютеры, что дает возможность расширять понятийную базу знаний учащихся по различным разделам курса физики. Использование обучающих программ расположенных в образовательных Интернет-сайтах или использование CD – дисков с обучающими программами («Живая физика», «Открытая физика» и др.) создает условия для формирования умений проводить виртуальный физический эксперимент.

В программе предусмотрено выполнение семи лабораторных работ и одиннадцати контрольных работ по основным разделам курса физики 10 — 11 классов. Текущий контроль ЗУН учащихся рекомендуется проводить по дидактическим материалам, рекомендованным министерством просвещения РФ в соответствии с образовательным стандартом. Практические задания, указанные в планировании рекомендуются для формирования у учащихся умений применять знания для решения задач, и подготовки учащихся к сдаче базового уровня ЕГЭ по физике.

Прямым шрифтом указан материал, сформулированный в образовательном стандарте подлежащий обязательному изучению и контролю знаний учащихся. В квадратных скобках указан материал, сформулированный в образовательном стандарте (уровень общего образования) который подлежит изучению, но не является обязательным для контроля и не включается в требования к уровню подготовки выпускников. Курсивом указан материал рекомендованный Г. Я. Мякишевым. С нашей точки зрения изучение этого материала является обязательным для изучения и контроля знаний учащихся в рамках решения задачи поставленной нами при использовании данной программы в учебном процессе.

Рекомендации к методике преподавания

В процессе преподавания важно научить школьников применять основные положения науки для самостоятельного объяснения физических явлений, результатов эксперимента, действия приборов и установок. Выделение основного материала в каждом разделе курса физики помогает учителю обратить внимание учащихся на те вопросы, которые они должны глубоко и прочно усвоить. Физический эксперимент является органической частью школьного курса физики, важным методом обучения.

Решение основных учебно-воспитательных задач достигается на уроках сочетанием разнообразных форм и методов обучения. Большое значение придается самостоятельной работе учащихся: повторению и закреплению основного теоретического материала; выполнению фронтальных лабораторных работ; изучению некоторых практических приложений физики, когда теория вопроса уже усвоена; применению знаний в процессе решения задач; обобщению и систематизации знаний.

Следует уделять больше внимания на уроке работе учащихся с книгой: учебником, справочной литературой, книгой для чтения, хрестоматией и т. п. При работе с учебником необходимо формировать умение выделять в тексте основной материал, видеть и понимать логические связи внутри материала, объяснять изучаемые явления и процессы.

Рекомендуется проведение семинаров обобщающего характера, например по таким темам: законы сохранения импульса и энергии и их применение; применение электрического тока в промышленности и сельском хозяйстве.

Решение физических задач должно проводиться в оптимальном сочетании с другими методами обучения. Из-за сокращения времени на изучение физики особое значение приобретают задачи, в решении которых используется несколько закономерностей; решение задач проводится, как правило, сначала в общем виде. При решении задач требующих применение нескольких законов, учитель показывает образец решения таких задач и предлагает подобные задачи для домашнего решения. Для учащихся испытывающих затруднение в решении указанных задач организуются индивидуальные консультации.

Основной учебный материал должен быть усвоен учащимися на уроке. Это требует от учителя постоянного продумывания методики проведения урока: изложение нового материала в форме бесед или лекций, выдвижение учебных проблем; широкое использование учебного эксперимента (демонстрационные опыты, фронтальные лабораторные работы, в том числе и кратковременные), самостоятельная работа учащихся. Необходимо совершенствовать методы повторения и контроля знаний учащихся, с тем, чтобы основное время урока было посвящено объяснению и закреплению нового материала. Наиболее эффективным методом проверки и коррекции знаний, учащихся при проведении промежуточной диагностики внутри изучаемого раздела является использование кратковременных (на 7-8 минут) тестовых тематических заданий. Итоговые контрольные работы проводятся в конце изучения соответствующего раздела. Все это способствует решению ключевой проблемы — повышению эффективности урока физики.

Таблица 2: Учебно-тематический план 11 класс

sov.opredelim.com

Рабочая программа по физике 10 класс (Тихомирова)

Успейте воспользоваться скидками до 50% на курсы «Инфоурок»

по физике к учебнику С.А.Тихомировой

Выполнила: учитель I категории

Козлова Вера Ивановна

Пояснительная записка по физике. 10 класс

Рабочая программа по физике для 10 класса составлена в соответствии с Федеральным компонентом государственного стандарта среднего (полного) общего образования, на основе примерной программы среднего (полного) общего образования по физике и авторской программы С.А.Тихомировой, рекомендованной МО РФ.

Рабочая программа, а также тематическое планирование согласно учебному плану рассчитаны на 3 часа в неделю и ориентированы на учебник «Физика. 10 класс», авторы С.А Тихомирова, Б.М.Яворский, М.: Мнемозина. С.А.Тихомирова. Физика. Используются рабочая тетрадь С.А.Тихомировой, изд. «Мнемозина», сборник задач по физике А.П. Рымкевич, изд. « Дрофа». За счет вариативной части учебного плана введен дополнительный час для расширения содержания учебного материала по следующим разделам: «Кинематика», «Динамика», «Статика», «Законы сохранения в механике», «Молекулярно-кинетическая теория. Свойства газов», «Основы термодинамики», «Свойства твердых тел», «Электростатика», «электрический ток в различных средах».

Данная рабочая программа конкретизирует содержание предметных тем образовательного стандарта для учащихся 10-го класса, дает распределение учебных часов по разделам курса и последовательность изучения разделов и тем учебного предмета, определяет набор практических работ, необходимых для формирования ключевых компетенций учащихся, учитывает требования всех компонентов обязательного стандарта (требования к уровню подготовки выпускников средней полной школы).

Значение физики в школьном образовании определяется ролью физической науки и жизни современного общества, ее влиянием на темпы развития научно-технического прогресса. Основной акцент при обучении физике делается на научный и мировоззренческий аспект образования по физике.

Целью изучения курса физики в 10-м классе является:

— развитие мышления учащихся, формирование у них умений самостоятельно приобретать и применять знания, наблюдать и объяснять физические явления;

— овладение школьниками знаниями об экспериментальных фактах, понятиях, законах, теориях, методах физической науки: о современной научной картине мира; о широких возможностях применения физических законов в технике и технологии;

— усвоение школьниками идей единства строения материи и неисчерпаемости процесса ее познания, понимание роли практики в познании физических явлений и законов;

— формирование познавательного интереса к физике и технике, развитие творческих способностей, осознанных мотивов учения;

— подготовка к продолжению образования и сознательному выбору профессии.

В соответствии с программой курс физики способствует формированию и развитию у учащихся следующих умений и навыков:

— знание современных физических теорий (понятий, физических моделей, законов, экспериментальных результатов);

— выдвижение гипотез, планирование экспериментов, или его моделирования;

— понимание границ применимости физических моделей.

Для осуществления данных целей и задач используются следующие методы познавательной деятельности: наблюдение, измерение, опыт, эксперимент, моделирование, сравнение, сопоставление, классификация объектов, исследование несложных практических ситуаций, выдвижение предположений и подтверждение их экспериментом, способы решения учебной задачи на основе заданных алгоритмов; используются практические и лабораторные работы за 10-й класс, творческие работы; применяются современные ИКТ; используется цифровая лаборатория для проведения демонстраций на уроках по следующим темам: «Механическое движение. Траектория, путь, перемещение», «Ускорение», «Свободное падение», «Равномерное движение по окружности», «Сила», «Вес. Невесомость. Перегрузка», «Сила трения», «Закон сохранения импульса», «Закон сохранения механической энергии», «Изотермический процесс», «Взаимное превращение жидкостей и газов. Кипение жидкости», «Электрическая емкость. Энергия заряженного конденсатора». Программное обеспечение позволяет учителю экономить время при подготовке учебного материала, фиксировать его в памяти компьютера, использовать материал в классе, сопровождать показ только устными объяснениями и комментариями, что поднимает эффективность обучения на новый уровень. Виртуальная физическая лаборатория, в которой с помощью измерительных приборов, лабораторного оборудования, наборов готовых моделей, позволяет наглядно изучать количественные и качественные характеристики физических процессов и явлений, происходящих в окружающем нас мире, модели сложных технических устройств, используемых в научных исследованиях, интерактивные модели опытов, позволивших открыть ключевые законы природы.

В результате изучения курса физики 10 класса учащиеся должны знать:

1. Сущность метода научного познания окружающего мира:

— опыты, обосновывающие научные представления и законы,

— опыты, проверяющие законы и их следствия,

— теоретические модели, объясняющие физические явления, границы применения научных моделей (область, условия) законов, теорий,

— назначение физических приборов и области их применения,

— роль физики в создании технических объектов (тепловых двигателей, генераторов тока, лазеров, ядерных реакторов и др.).

2. Основные понятия и законы физики:

— принципы относительности, близкодействия суперпозиции соответствия,

— понятия: скорость, ускорение, сила, перемещение, энергия, амплитуда, период колебаний, идеальный газ, КПД, напряженность электрического поля, потенциал, электроемкость,

— законы движения и взаимодействия тел (законы Ньютона, Гука, Кулона),

— законы идеального газа (Бойля-Мариотта, Гей-Люссака, Шарля, Менделеева-Клапейрона),

— закономерности прямолинейного, криволинейного и колебательного движения.

В соответствии с программой курс физики за 10-й класс способствует формированию и развитию у учащихся следующих навыков и умений:

1. Использовать теоретические модели для объяснения физических явлений:

— применять законы движения и взаимодействия при решении задач,

— применять газовые законы при решении задач на изопроцессы,

— работать с графиками различных видов движении, изопроцессов, колебаний,

— экспериментально измерять: ускорение свободного падения, коэффициент трения скольжения, жесткость пружины,

— описывать преобразования энергии в различных процессах и работе тепловых двигателей.

2. Воспринимать, перерабатывать и предъявлять учебную информацию в различных формах (словесной, образной, символической):

— излагать суть содержания текста учебника,

— выделять в тексте учебника важнейшую научную информацию,

— делать выводы на основе экспериментальных данных, представленных таблицей, графиком или диаграммой.

3. Владеть понятиями и представлениями физики, связанными с жизнедеятельностью человека.

— значение температуры тела здорового человека, точки замерзания и кипения воды при нормальном давлении;

— экологические проблемы, связанные с работой тепловых двигателей,

— зависимость тормозного пути от скорости транспортных средств и коэффициента трения.

В соответствии с годовым календарным графиком, расписанием учебных занятий программа будет реализована за 100 часов:

I полугодии – 48 ч.;

II полугодие – 52 ч.

Количество контрольных работ – 8;

лабораторных работ — 6.

Программа обеспечена учебно-методической литературой:

Учебник «Физика. 10 класс», авторы С.А Тихомирова, Б.М.Яворский, М.: Мнемозина, 2008г. и др.

С.А.Тихомирова. Физика. Рабочая тетрадь. Учебное пособие для учащихся общеобразовательных учреждений. М.: Мнемозина, 2010г. др.

А.П. Рымкевич. Сборник задач по физике. М.: Дрофа.

О.Ф. Кабардин. Задания для контроля знаний учащихся.

Э.Д. Крож. Программированные задания по физике.

Д.И. Пеннер. Задания по физике. М.: Просвещение.

Э.Е. Эвенчик. Контрольные работы по физике.

С.Я. Шамаш. Физика. 7-11 классы. М.: Просвещение.

В.В. Губанов. Контрольные задания. 10 класс. Изд-во «Лицей».

В.В. Губанов. Физика. Тесты. 10 класс. Изд-во «Лицей».

СОДЕРЖАНИЕ РАБОЧЕЙ ПРОГРАММЫ ПО ФИЗИКЕ, 10 КЛАСС

Типы и формы учебной деятельн.

Введение. Методы научного познания

Сущность методов научного познания окружающего мира. Эксперимент и теория в процессе познания природы – основа гипотез и научных теорий. Моделирование вялений и объектов природы. Границы применимости физических теорий, законов.

Понимать сущность метода научного познания окружающего мира. Раскрывать влияние научных идей и теорий на формирование современного мировоззрения. Указывать границы применения классической механики (механики Ньютона).

Понятия: механическое движение, траектория, материальная точка и условия применимости этой модели, система отсчета и необходимость ее выбора, перемещение и его отличие от пути, скорость линейная и угловая, ускорение, центростремительное ускорение. Единицы измерения выше названных физических величин. Виды баллистического движения.

Строить и читать графики. Решать задачи алгебраическим методом. Экспериментально определять перемещение, скорость, ускорение с учетом погрешности измерений.

Комбинированные уроки, лаб. работа

Датчики: силы, расстояния, ускорения, ворота с фотоэлементом, вращательного движения, силы (напольный динамометр)

Понятия: инертность, инерция, сила, виды сил. Физические явления: движение по инерции, законы движения и границы их применения. Законы Ньютона. Закон Гука. Закон всемирного тяготения.

Вычислять: силу тяжести, вес, силу упругости, силу трения, силу всемирного тяготения. Применять законы Ньютона в решении задач.

Лекция, комбинированные уроки, решение задач, лаб. работа.

Датчики: силы, расстояния, ускорения, силы (напольный динамометр), аптофотоэлектрический, движения

Определения: плечо силы, момент силы, центр тяжести. Виды равновесия.

Вычислять: момент силы. Применять условия равновесия тел. Определять положение центра тяжести.

Комбинированные уроки, решение задач.

Датчики: силы, движения

2.4. Законы сохранения в механике

Понятия: импульс тела, импульс силы, замкнутая система, работа, мощность. Виды энергии.

Приводить примеры опытов, позволяющих проверить закон сохранения импульса. Указывать границы применения законов сохранения импульса и энергии. Вычислять скорости тел после неупругого их столкновения; скорость тела, применяя закон сохранения энергии. Описывать преобразование энергии при различных видах движения.

Комбинированные уроки, решение задач, контрольная работа.

Молекулярная физика. Термодинамика.

3.1. Молекулярно-кинетическая теория. Свойства газов.

Основные положения МКТ. Модель идеального газа. Понятия: моль, количество вещества, молярная масса. Связь температуры со средней кинетической энергией частиц вещества. Связь между давлением и средней кинетической энергией молекул. Уравнение состояния идеального газа. Изопроцессы и газовые законы.

Указывать границы: применимости модели идеального газа; научной теории прямой пропорциональной зависимости энергии теплового движения частиц вещества от абсолютной температуры. Раскрывать смысл: основного уравнения МКТ; уравнения Менделеева-Клапейрона. Использовать их для вычисления параметров газа. Определять по графикам характер изопроцессов.

Комбинированные уроки, решение задач, лаб. работа, контрольная работа.

Датчики: температуры, давления

3.2. Основы термодинамики

Понятия: внутренняя энергия, степени свободы, количество теплоты, КПД теплового двигателя. Адиабатный процесс. Законы термодинамики. Экологические проблемы, связанные с работой тепловых двигателей.

Вычислять: внутреннюю энергию газа, работу газа, КПД теплового двигателя. Применять: 1 закон термодинамики к изопроцессам, уравнение теплового баланса при видах теплопередачи и изменения агрегатного состояния вещества

3.3. Свойства твердых тел

Виды деформации твердых тел. Понятия: механическое напряжение, анизотропия и изотропия. Строение и свойства кристаллических и аморфных тел.

Вычислять: напряжение, абсолютное и относительное удлинение.

3.4. Свойства жидкостей

Структуру и свойства жидкостей. Понятия: поверхностное натяжение, смачивание, капиллярность, влажность.

Пользоваться психрометром. Вычислять абсолютную и относительную влажность. Описывать процесс кипения. Объяснять явления смачивания и поверхностного натяжения.

Комбинированные уроки, лаб. работа.

Датчик давления, влажности, температуры

Понятия: электрический заряд, элементарный заряд, точечный заряд. Знать: силовую и энергетическую характеристики электростатического поля; принцип суперпозиции для напряженности и потенциала; связь между напряженностью и напряжением; поведение проводников в электрическом поле.

Вычислять: силу взаимодействия точечных электрических зарядов, напряженность и потенциал в точках поля, работу сил поля по перемещению заряда, электроемкость и энергию заряженного конденсатора.

Датчики: тока, напряжения, электрического заряда (электрометр)

4.2. Законы постоянного электрического тока

Необходимые условия для возникновения тока. Понятие ЭДС. Закон Ома для замкнутой цепи. Закономерности соединения проводников. Формулы для вычисления работы и мощности тока. Знать: об опасности для здоровья человека источников тока и меры безопасности при работе с бытовыми электроприборами.

Вычислять: ЭДС источника тока, силу тока и напряжение, сопротивление в простейших электрических цепях. Описывать преобразование энергии при протекании тока по проводнику.

Комбинированные уроки, решение задач, лаб. работа.

Датчики: тока, напряжения

4.3. Электрический ток в различных средах

Носители тока в металлах, жидкостях и газах. Зависимость сопротивления от температуры. Понятия: сверхпроводимость, плазма. Электрический ток в вакууме. Проводимость полупроводников.

Объяснять механизмы электропроводности различных сред, зависимость сопротивления полупроводников от освещенности и температуры.

Комбинированные уроки, контрольная работа(тест).

Комбинированные уроки, контр.работа

КАЛЕНДАРНО – ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ ПО ФИЗИКЕ. 10 КЛАСС

infourok.ru

Например, классическая механика, основанная на трех законах Ньютона и законе всемирного тяготения, справедлива только при движении тел со скоростями, намного меньшими скорости света. Если же скорости тел становятся сравнимыми со скоростью света (например, удаленные от нас космические объекты или элементарные частицы в ускорителях), предсказания классической механики становятся неправильными. Тут в «игру» вступает специальная теория относительности, созданная в начале 20-го века Эйнштейном.

Третий пример: хорошо знакомая вам из курса физики основной школы геометрическая оптика, основанная на представлении о световых лучах, прекрасно согласуется с опытом, если размеры предметов, с которыми взаимодействует свет, намного больше длины световой волны. Но если размеры предметов сравнимы с длиной световой волны или намного меньше ее, вступает в силу волновая теория света, в основе которой лежит представление о световых волнах.

Законы сохранения и принципы, действующие в природе (стр. 1 из 3)

СОДЕРЖАНИЕ

1. Динамические законы в макро и статические в микромире

2. Закон сохранения энергии и невозможность создания вечного двигателя первого рода

3. Второй закон термодинамики и невозможность создания вечного двигателя второго рода

4. Энергетика химических процессов

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

В XIX в. термодинамика провозгласила парадоксальный вывод: если бы мир был гигантской машиной, то такая машина неизбежно бы остановилась, т.к. запас полезной энергии рано или поздно был бы исчерпан. Затем теория эволюции Дарвина сдвинула интерес от физики в сторону биологии.

Главный результат современного естествознания в том, что оно разрушило неподвижную систему понятий XIX в.

Цель всякого изменения, если оно сообразно природе вещей состоит в том, чтобы реализовать в каждом организме идеал его рациональной сущности. В этой сущности, которая в применении к живому есть в одно и то же время его окончательная, формальная и действующая причина, — ключ к пониманию сущности природы.… «рождение современной науки» — столкновение между последователями Аристотеля и Галилея — есть столкновение между двумя формами рациональности.

Итак, можно выделить три примера картин мира:

Современная естественно научная картина мира основывается на принципе саморазвития. В этой картине присутствуют человек и его мысль. Она эволюционна и необратима.

Цель работы — изучить законы сохранения и принципы, действующие в природе.

1 ДИНАМИЧЕСКИЕ ЗАКОНЫ В МАКРО- И СТАТИЧЕСКИЕ В МИКРОМИРЕ

Макромир и микромир — две специфические области объективной реальности, различающиеся уровнем структурной организации материи. Сфера макроявления — это обычный мир, в котором живет и действует человек (планеты, земные тела, кристаллы, большие молекулы и др.). Качественно иную область представляет микромир (атомы, ядра, элементарные частицы и др.), где размеры объектов меньше миллиардных долей сантиметра, а временные промежутки порядка миллиардных долей секунды, т. е. непосредственно недоступны наблюдению. Каждый из этих миров характеризуется своеобразием строения материи, пространственно-временных и причинных отношений, закономерностей движения.

Так, в макромире материальные объекты имеют резко выраженную прерывную, корпускулярную или непрерывную, волновую природу и их движение подчиняется динамическим законам классической механики. Для явлений микромира, напротив, характерна тесная связь корпускулярных и волновых свойств, которая находит свое выражение в статистических законах квантовой механики. Своеобразная граница раздела макро- и микромира была установлена в связи с открытием теории, названной постоянной Планка. Существенным аспектом этой новой константы явилась «конечность взаимодействия», означавшая, что любые взаимодействия между объектами в микромире (в т. ч. между прибором и микрочастицей) не могут быть меньше значения кванта действия. Специфика макро- и микромира находит свое отражение в познании, приводит к ограничению сферы применимости старых физических теорий и возникновению новых (теория относительности, квантовая механика, физика элементарных частиц). Современные «физические идеалисты», абсолютизируя различие макро- и микромира, особенности их познания, приходят к отрицанию объективности и познаваемости микромира. В действительности же наука показывает тесную связь между макро- и микромиром и обнаруживает, в частности, возможности появления макроскопических объектов при столкновении микрочастиц высокой энергии. Проникновение физики в мир атома, а затем атомного ядра и элементарных частиц явилось блестящим подтверждением и обогащением принципов диалектического материализма.

Основное содержание проблем детерминизма и причинности — это соотношение динамических и статистических закономерностей.

Детерминизм — это учение об объективной закономерной взаимосвязи и взаимообусловленности явлений материального и духовного миров. Центральным ядром детерминизма является положение о существовании причинности.

Причинность — это генетическая связь между отдельными состояниями видов и форм материи в процессе ее движения и развития.

Понятие причинности возникло в связи с практической деятельностью людей. Для него характерно три признака:

1. Временное предшествие причин следствию («нет дыма без огня»).

2. Одна и та же причина всегда обуславливает одно и то же следствие (яблоко одинаково падает, так как причина — притяжение Земли).

3. Причина — это активный агент, производящий действие.

Идея детерминизма, таким образом, состоит в том, что все явления и события в мире не произвольны, а подчиняются объективным закономерностям, существующим вне и независимо от их познания. Проявление детерминизма связано с существованием объективных физических законов и находит отражение в фундаментальных физических теориях.

Фундаментальные физические законы — это наиболее полное на сегодняшний день, но приближенное отражение объективных процессов в природе. Различные формы движения материи описываются различными фундаментальными теориями. Каждая из этих теорий описывает вполне определенные явления: механическое или тепловое движение, электромагнитные явления.

Существуют более общие законы в структуре фундаментальных физических теорий, охватывающие все формы движения материи и все процессы. Это законы симметрии, или инвариантности, и связанные с ними законы сохранения физических величин. Все физические законы делятся на две большие группы: динамические и статистические.

Динамическими называют законы, отражающие объективную закономерность в форме однозначной связи физических величин. Динамическая теория — это теория, представляющая совокупность физических законов.

Статистические законы — это такие законы, когда любое состояние представляет собой вероятностную характеристику системы. Здесь действуют статистические распределения величин. Это означает, что в статистических теориях состояние определяется не значениями физических величин, а их распределениями. Нахождение средних значений физических величин — главная задача статистических теорий. Вероятностные характеристики состояния совершенно отличны от характеристик состояния в динамических теориях. Статистические законы и теории являются более совершенной формой описания физических закономерностей, так как любой известный сегодня процесс в природе более точно описывается статистическими законами, чем динамическими. Различие между ними в одном — в способе описания состояния системы.

Смена динамических теорий статистическими не означает, что старые теории отменены и сданы в архив. Практическая их ценность в определенных границах нисколько не умаляется. При разговоре о смене теорий имеется в виду смена глубоких физических представлений более глубокими представлениями о сущности явлений, описание которых дается соответствующими теориями. Одновременно со сменой физических представлений расширяется область применения теории.

2 ЗАКОН СОХРАНЕНИЯ ЭНЕРГИИ И НЕВОЗМОЖНОСТЬ СОЗДАНИЯ ВЕЧНОГО ДВИГАТЕЛЯ ПЕРВОГО РОДА

Механическая энергия подразделяется на два вида: потенциальную и кинетическую. Потенциальная энергия характеризует взаимодействующие тела, а кинетическая — движущиеся. И потенциальная и кинетическая энергии изменяются только в результате такого взаимодействия тел, при котором действующие на тела силы совершают работу, отличную от нуля.

Рассмотрим теперь вопрос об изменении энергии при взаимодействии тел, образующих замкнутую систему. Если несколько тел взаимодействуют между собой только силами тяготения и силами упругости и никакие внешние силы не действуют, то при любых взаимодействиях тел сумма кинетической и потенциальной энергий тел остается постоянной. Это утверждение называется законом сохранения энергии в механических процессах.

Сумма кинетической и потенциальной энергий тел называется полной механической энергией. Поэтому закон сохранения энергии можно сформулировать так: полная механическая энергия замкнутой системы тел, взаимодействующих силами тяготения и упругости, остается постоянной.

Основное содержание закона сохранения энергии заключается не только в установлении факта сохранения полной механической энергии, но и в установлении возможности взаимных превращений кинетической и потенциальной энергий в равной количественной мере при взаимодействии тел.

Закон сохранения полной механической энергии в процессах с участием сил упругости и гравитационных сил является одним из основных законов механики. Знание этого закона упрощает решение многих задач, имеющих большое значение в практической жизни.

Например, для получения электроэнергии широко используется энергия рек. С этой целью строят плотины, перегораживают реки. Под действием сил тяжести вода из водохранилища за плотиной движется вниз по колодцу ускоренно и приобретает некоторую кинетическую энергию. При столкновении быстро движущегося потока воды с лопатками гидравлической турбины происходит преобразование кинетической энергии поступательного движения воды в кинетическую энергию вращательного движения роторов турбины, а затем с помощью электрического генератора — в электрическую энергию. Механическая энергия не сохраняется, если между телами действуют силы трения. Автомобиль, двигавшийся по горизонтальному участку дороги после выключения двигателя, проходит некоторый путь и под действием сил трения останавливается. Во время торможения автомобиля произошло нагревание тормозных колодок, шин автомобиля и асфальта. В результате действия сил трения кинетическая энергия автомобиля не исчезла, а превратилась во внутреннюю энергию теплового движения молекул.

Граница применимости физических законов и теорий

Естествознание

Формами существования материи являются про­странство и время. Материя неотъемлема от них. Современная наука оперирует такими струк­турными уровнями, как элементарные частицы и поля, атомы и молекулы, макроскопические тела, геологические системы, планеты и звезды, галактики и метагалактики; совокупности организмов, способных к воспроизводству и, наконец, общество. Мы будем изучать только первые структурные уровни- поля и частицы, макро­скопические тела.

Различают ряд основных форм движения материи: механическую, физиче­скую (включая тепловую, гравитационную, ядерную и т.д.), химиче­скую, биологическую, общественную. Высшие формы движения включают в себя более низшие, но не сводятся только к ним. Так, ядерные процессы невозможно описать только формулами классической механики.

В настоящем курсе будут рассмотрены лишь простые формы движения материи — механическая, физическая и химическая. Для описания материи и ее дви­жения необходимо ввести количественные меры этих величин исходя из поставленных задач. Масса является количественной мерой материи и вводится как для микро- и макрообъектов, так и для полей. Одной из количественных мер движения материи является энергия. Она имеет много форм: механиче­ская, тепловая, ядерная, химическая и т.д. Поскольку материя не существует без дви­жения, а движение без материи между количественными характеристиками меры и движения материи должна существовать связь. Эта связь была установлена в начале нашего века А. Эйнштейном (1879-1955) в работах по теории относи­тельности.

Мы будем рассматривать два вида материи — вещество и поле. К первому отнесем элементарные частицы, атомы, молекулы, все построенные из них макросистемы. Ко второму отнесем особую форму материи, физическую систему с бесконечным числом степеней свободы. Примерами физических полей могут служить электромагнитные и гравитационные поля, поля ядер­ных сил, а также волновые поля.

4. ПОСТУЛАТИВНОСТЬ ОСНОВНЫХ ЗАКОНОВ ЕСТЕСТВО­ЗНАНИЯ, ГРАНИЦЫ ИХ ПРИМЕНИМОСТИ.

Для описания поведения простых и сложных систем нужно установить “правила игры”, т.е. законы которым подчиняются те или иные вид движе­ния материи. В некоторых науках, которые не относятся к естественным, на­пример геометрия, поступают следующим образом. Сначала формулиру­ются аксиомы, а потом из них делаются выводы (теоремы). Логика построения естественных наук другая, нельзя сразу ввести законы и смотреть, что из них следует. Так поступить нельзя, поскольку исследователю неизвестны все законы естествознания. Одной из задач является именно их установление и формулирование. Но, ответив на каждый вопрос, исследователь неизбежно ставит несколько новых. Чем больше познается, тем шире становятся границы непознанного. Установленные на определенном этапе развития науки законы, всегда являются приближенными. По мере накопления знаний, новых экспериментальных фактов, явлений и увеличения точности измерений появляются данные, не укладываю­щиеся в рамки имеющихся законов и эти законы пересматриваются.

Есть и другая сторона этого вопроса. Для точной формулировки законов ес­тествознания, в особенности физики, требуются новые определения и по­нятия, знание специальных разделов математики. Исааку Ньютону (1643-1727) для описания законов механики потребовалось создать совершенно новые для своего времени разделы высшей математики: дифференциальное и интегральное исчисление. Физики часто сталкивались с ситуацией, когда имевшегося математического аппарата оказывалось недостаточно для получе­ния количественных формулировок полученного закона и требовалось создавать специальный математически аппарат. Пример с Ньютоном и Лейбни­цем и созданием дифференциального и интегрального исчисления является классическим.

В этом разделе мы рассмотрим самые общие представления о том, как устанавливаются законы естествознания, как они применяются и чем они ограни­чены. Уже говорилось, что опыт — единственный судья истины. Законы ес­тествознания постулируются на основании наблюдаемых опытных фактов. Сначала идет процесс накопления знаний в определенной области. Эти результаты анализируются и делается некоторое предположение. Это предположение не выводится из других законов. Оно возникает само по себе на основании опыта. Сделанное умозаключение, сформулированное в виде математической формулы, становится частью гипотезы. Если последующие опыты подтверждают правильность этого предположения, оно становится законом.

Проиллюстрируем сказанное несколькими примерами. Закон всемирного тяготения, был открыт И. Ньютоном не потому, что, как любят писать в популярной литературе, ему “упало на голову яблоко” Закон родился в результате анализа трех законов движения планет И. Кеплера (1571-1630). Законы Кеплера позволяли рассчитывать с высокой точностью движения планет. Ньютон показал, что эти законы могут быть получены на основании одного закона — закона всемирного тяготения:

, где G — константа, m1 и m2 — массы тел, r — расстояние между ними.

Анализируя опыты, Ш.О. Кулон в 1785 году сформулировал закон взаимодействия зарядов, позже названный его именем:

,

где q1 и q2 — заряды, r — расстояние между ними; константа определяется выбором системы единиц. До Кулона этот закон ни в каком виде не формулировался.

Уже отмечалось, что все научные законы всегда приближенные. Почему же сразу не удается открыть “правильный закон”? Почему всегда приходится начинать с каких-то приближений? Во-первых, для “точной” формулировки закона зачастую бывает еще не готов соответствующий математический аппарат, а, во-вторых, экспериментальные данные всегда бывают недостаточно точны. Точность измерений определяется с одной стороны нашими приборами, а с другой стороны — некоторыми фундаментальными запретами, связанными с природой явления. Существует, например, соотношение неопределенностей Гейзенберга, которое ограничивает точность одновременного измерения импульса и координаты частицы.

Приведем пример. Реально мы можем измерить массу волчка с точностью до долей микрограмма. Измеряя массу покоящегося и вращающегося волчка мы всегда будем получать один результат. Отсюда, казалось бы, можно было вывести закон, что масса тела постоянна и не зависит от его скорости. Но оказывается масса от скорости зависит когда скорости становятся сравнимыми с скоростью света.

Сказанное приводит нас к выводу, что законы и теории не абсолютны. Они развиваются по мере накопления знаний. Фундаментальные законы естествознания описывают огромное количество явлений в разных областях. И все они подчиняются некоторым общим правилам. Рассмотрим их.

Во первых, законы сами по себе не меняются. Именно поэтому они и называются фундаментальными. Иначе никакая наука не могла бы развиваться. Но, надо помнить о том, что закон написан для определенной области явлений.

Всякий раз, когда с определенной степенью точности подтверждается какой-либо закон, можно утверждать, что закон окончателен и ни какой результат его не опровергнет в той области, для которой он написан. Однако может так случится, что появление новых экспериментальных данных или теорий приведет к тому, что закон окажется приближенным. Иначе говоря, увеличение точности измерений может обнаружить неточность даже самых незыблемых законов.

Рабочая программа по физике (средняя школа)

Разделы: Физика

Рабочая программа по физике включает три раздела: пояснительную записку; основное содержание с примерным распределением учебных часов по разделам курса, рекомендуемую последовательность изучения тем и разделов; требования к уровню подготовки выпускников.

Общая характеристика учебного предмета

Физика как наука о наиболее общих законах природы, выступая в качестве учебного предмета в школе, вносит существенный вклад в систему знаний об окружающем мире. Она раскрывает роль науки в экономическом и культурном развитии общества, способствует формированию современного научного мировоззрения. Для решения задач формирования основ научного мировоззрения, развития интеллектуальных способностей и познавательных интересов школьников в процессе изучения физики основное внимание следует уделять не передаче суммы готовых знаний, а знакомству с методами научного познания окружающего мира, постановке проблем, требующих от учащихся самостоятельной деятельности по их разрешению. Подчеркнем, что ознакомление школьников с методами научного познания предполагается проводить при изучении всех разделов курса физики, а не только при изучении специального раздела «Физика и методы научного познания»

Гуманитарное значение физики как составной части общего образовании состоит в том, что она вооружает школьника научным методом познания, позволяющим получать объективные знания об окружающем мире.

Знание физических законов необходимо для изучения химии, биологии, физической географии, технологии, ОБЖ.

Курс физики в примерной программе среднего (полного) общего образования структурируется на основе физических теорий: механика, молекулярная физика, электродинамика, электромагнитные колебания и волны, квантовая физика.

Особенностью предмета физика в учебном плане образовательной школы является и тот факт, что овладение основными физическими понятиями и законами на базовом уровне стало необходимым практически каждому человеку в современной жизни.

Цели изучения физики

Изучение физики в средних (полных) образовательных учреждениях на базовом уровне направлено на достижение следующих целей:

  • освоение знаний о фундаментальных физических законах и принципах, лежащих в основе современной физической картины мира; наиболее важных открытиях в области физики, оказавших определяющее влияние на развитие техники и технологии; методах научного познания природы;
  • овладение умениями проводить наблюдения, планировать и выполнять эксперименты, выдвигать гипотезы и строить модели, применять полученные знания по физике для объяснения разнообразных физических явлений и свойств веществ; практического использования физических знаний; оценивать достоверность естественнонаучной информации;
  • развитие познавательных интересов, интеллектуальных и творческих способностей в процессе приобретения знаний и умений по физике с использованием различных источников информации и современных информационных технологий;
  • воспитание убежденности в возможности познания законов природы; использования достижений физики на благо развития человеческой цивилизации; необходимости сотрудничества в процессе совместного выполнения задач, уважительного отношения к мнению оппонента при обсуждении проблем естественнонаучного содержания; готовности к морально-этической оценке использования научных достижений, чувства ответственности за защиту окружающей среды;
  • использование приобретенных знаний и умений для решения практических задач повседневной жизни, обеспечения безопасности собственной жизни, рационального природопользования и охраны окружающей среды.

    Место предмета в учебном плане

    Федеральный базисный учебный план для образовательных учреждений Российской Федерации отводит 140 часов для обязательного изучения физики на базовом уровне ступени среднего (полного) общего образования. В том числе в X и XI классах по 70 учебных часов из расчета 2 учебных часа в неделю. Школьным учебным планом на изучение физики в средней школе на базовом уровне отводится 207 часов. В том числе в 10 классе — 105 часов, в 11 классе — 102 учебных часа из расчета 3 учебных часа в неделю.

    Рабочая программа составлена с учетом разнородности контингента учащихся непрофилированной средней школы. Поэтому она ориентирована на изучение физики в средней школе на уровне требований обязательного минимума содержания образования и, в то же время, дает возможность ученикам, интересующимся физикой, развивать свои способности при изучении данного предмета. Увеличение часов направлено на усиление общеобразовательной подготовки, для закрепления теоретических знаний практическими умениями применять полученные знания на практике (решение задач на применение физических законов) и расширения спектра образования интересов учащихся.

    В рабочую программу включены элементы учебной информации по темам и классам, перечень демонстраций и фронтальных лабораторных работ, необходимых для формирования умений, указанных в требованиях к уровню подготовки выпускников старшей школы.

    В рабочей программе выделен заключительный раздел «Повторение», что способствует систематизации знаний и умений, которыми должен овладеть учащийся. Обобщающее повторение проводится в соответствии со структурой рабочей программы, за основу берутся изученные фундаментальные теории, подчеркивается роль эксперимента, гипотез и моделей.

    Весь курс физики распределен по классам следующим образом:

    — в 10 классе изучаются: физика и методы научного познания, механика, молекулярная физика, электродинамика (начало);

    — в 11 классе изучаются: электродинамика (окончание), оптика, квантовая физика и элементы астрофизики, методы научного познания.

    Распределение учебного времени по темам является примерным. Учителю дано право изменять порядок изучения отдельных вопросов внутри темы, а так же использовать по своему усмотрению резервное время.

    В качестве основных учебников взят комплект учебников Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н.. Физика 10,1 классы, М.: Просвещение, 2006 — 2008 г.г

    Общеучебные умения, навыки и способы деятельности

    Рабочая программа, составленная на основе примерной программы, предусматривает формирование у школьников общеучебных умений и навыков, универсальных способов деятельности и ключевых компетенций. Приоритетами для школьного курса физики на этапе основного общего образования являются:

  • использование для познания окружающего мира различных естественнонаучных методов: наблюдение, измерение, эксперимент, моделирование;
  • формирование умений различать факты, гипотезы, причины, следствия, доказательства, законы, теории;
  • овладение адекватными способами решения теоретических и экспериментальных задач;
  • приобретение опыта выдвижения гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез.
  • владение монологической и диалогической речью. Способность понимать точку зрения собеседника и признавать право на иное мнение;
  • использование для решения познавательных и коммуникативных задач различных источников информации.
  • владение навыками контроля и оценки своей деятельности, умением предвидеть возможные результаты своих действий:
  • организация учебной деятельности: постановка цели, планирование, определение оптимального соотношения цели и средств.
  • Обязательные результаты изучения курса «Физика» приведены в разделе «Требования к уровню подготовки выпускников», который полностью соответствует стандарту. Требования направлены на реализацию деятельностного и личностно ориентированного подходов; освоение учащимися интеллектуальной и практической деятельности; овладение знаниями и умениями, необходимыми в повседневной жизни, позволяющими ориентироваться в окружающем мире, значимыми для сохранения окружающей среды и собственного здоровья.

    Рубрика «Знать/понимать» включает требования к учебному материалу, который усваивается и воспроизводится учащимися. Выпускники должны понимать смысл изучаемых физических понятий, физических величин и законов.

    Рубрика «Уметь» включает требования, основанных на более сложных видах деятельности, в том числе творческой: описывать и объяснять физические явления и свойства тел, отличать гипотезы от научных теорий, делать выводы на основании экспериментальных данных. Приводить примеры практического использования полученных знаний, воспринимать и самостоятельно оценивать информацию, содержащуюся в СМИ, Интернете, научно-популярных статьях.

    В рубрике «Использовать приобретенные знания и умения в практической деятельности и повседневной жизни» представлены требования, выходящие за рамки учебного процесса и нацеленные на решение разнообразных жизненных задач.

    Основное содержание (207 часов)

    105 часов, 3 часа в неделю

    Физика и методы научного познания (2 часа)

    Физика — наука о природе. Научные методы познания окружающего мира и их отличия от других методов познания. Роль эксперимента и теории в процессе познания природы. Моделирование физических явлений и процессов. Научные гипотезы. Физические законы. Физические теории.

    Механика (35 часов)

    Механическое движение и его виды. Относительность механического движения. Прямолинейное равноускоренное движение. Принцип относительности Галилея. Законы динамики. Всемирное тяготение. Законы сохранения в механике. Предсказательная сила законов классической механики. Использование законов механики для объяснения движения небесных тел и для развития космических исследований. Границы применимости классической механики.

  • Зависимость траектории от выбора системы отсчета.
  • Падение тел в воздухе и в вакууме.
  • Явление инерции.
  • Сравнение масс взаимодействующих тел.
  • Второй закон Ньютона.
  • Измерение сил.
  • Сложение сил.
  • Зависимость силы упругости от деформации.
  • Силы трения.
  • Условия равновесия тел.
  • Реактивное движение.
  • Переход потенциальной энергии в кинетическую и обратно.
  • Измерение ускорения свободного падения.
  • Исследование движения тела под действием постоянной силы.
  • Изучение движения тел по окружности под действием силы тяжести и упругости.
  • Исследование упругого и неупругого столкновений тел.
  • Сохранение механической энергии при движении тела под действием сил тяжести и упругости.
  • Сравнение работы силы с изменением кинетической энергии тела.
  • Молекулярная физика (33 часа)

    Возникновение атомистической гипотезы строения вещества и ее экспериментальные доказательства. Абсолютная температура как мера средней кинетической энергии теплового движения частиц вещества. Модель идеального газа. Давление газа. Уравнение состояния идеального газа. Строение и свойства жидкостей и твердых тел.

    Законы термодинамики. Порядок и хаос. Необратимость тепловых процессов. Тепловые двигатели и охрана окружающей среды.

  • Механическая модель броуновского движения.
  • Изменение давления газа с изменением температуры при постоянном объеме.
  • Изменение объема газа с изменением температуры при постоянном давлении.
  • Изменение объема газа с изменением давления при постоянной температуре.
  • Кипение воды при пониженном давлении.
  • Устройство психрометра и гигрометра.
  • Явление поверхностного натяжения жидкости.
  • Кристаллические и аморфные тела.
  • Объемные модели строения кристаллов.
  • Модели тепловых двигателей.
    • Измерение влажности воздуха.
    • Измерение удельной теплоты плавления льда.
    • Измерение поверхностного натяжения жидкости.
    • Электродинамика (27 часов)
    • Элементарный электрический заряд. Закон сохранения электрического заряда. Электрическое поле. Электрический ток. Закон Ома для полной цепи.
    • Электрометр.
    • Проводники в электрическом поле.
    • Диэлектрики в электрическом поле.
    • Энергия заряженного конденсатора.
    • Электроизмерительные приборы.
  • Измерение электрического сопротивления с помощью омметра.
  • Измерение ЭДС и внутреннего сопротивления источника тока.
  • Измерение элементарного заряда.
  • Повторение (резерв свободного учебного времени) — 8 часов
  • Экскурсия — 4 часа проводится во внеурочное время
  • 102 часа, 3 часа в неделю

    Электродинамика (62 часа)

    Магнитное поле тока. Плазма. Действие магнитного поля на движущиеся заряженные частицы. Явление электромагнитной индукции. Взаимосвязь электрического и магнитного полей. Свободные электромагнитные колебания. Электромагнитное поле.

    Электромагнитные волны. Волновые свойства света. Различные виды электромагнитных излучений и их практические применения.

    Законы распространения света. Оптические приборы.

  • Магнитное взаимодействие токов.
  • Отклонение электронного пучка магнитным полем.
  • Магнитная запись звука.
  • Зависимость ЭДС индукции от скорости изменения магнитного потока.
  • Свободные электромагнитные колебания.
  • Осциллограмма переменного тока.
  • Генератор переменного тока.
  • Излучение и прием электромагнитных волн.
  • Отражение и преломление электромагнитных волн.
  • Интерференция света.
  • Дифракция света.
  • Получение спектра с помощью призмы.
  • Получение спектра с помощью дифракционной решетки.
  • Поляризация света.
  • Прямолинейное распространение, отражение и преломление света.
  • Оптические приборы
  • Измерение магнитной индукции.
  • Определение спектральных границ чувствительности человеческого глаза.
  • Измерение показателя преломления стекла.
  • Квантовая физика и элементы астрофизики (28 час)
  • Гипотеза Планка о квантах. Фотоэффект. Фотон. Гипотеза де Бройля о волновых свойствах частиц. Корпускулярно-волновой дуализм.

    Планетарная модель атома. Квантовые постулаты Бора. Лазеры.

    Строение атомного ядра. Ядерные силы. Дефект массы и энергия связи ядра. Ядерная энергетика. Влияние ионизирующей радиации на живые организмы. Доза излучения. Закон радиоактивного распада. Элементарные частицы. Фундаментальные взаимодействия.

    Солнечная система. Звезды и источники их энергии. Галактика. Пространственные масштабы наблюдаемой Вселенной. Современные представления о происхождении и эволюции Солнца и звезд. Строение и эволюция Вселенной.

  • Фотоэффект.
  • Линейчатые спектры излучения.
  • Лазер.
  • Счетчик ионизирующих частиц.
  • Наблюдение линейчатых спектров.
  • Физика и методы научного познания (2 часа)
  • Границы применимости физических законов и теорий. Принцип соответствия. Основные элементы физической картины мира.
  • Повторение (резерв свободного учебного времени) — 12 часов
  • ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ВЫПУСКНИКОВ

    В результате изучения физики на базовом уровне ученик должен

  • смысл понятий: физическое явление, гипотеза, закон, теория, вещество, взаимодействие, электромагнитное поле, волна, фотон, атом, атомное ядро, ионизирующие излучения, планета, звезда, галактика, Вселенная;
  • смысл физических величин: скорость, ускорение, масса, сила, импульс, работа, механическая энергия, внутренняя энергия, абсолютная температура, средняя кинетическая энергия частиц вещества, количество теплоты, элементарный электрический заряд;
  • смысл физических законов классической механики, всемирного тяготения, сохранения энергии, импульса и электрического заряда, термодинамики, электромагнитной индукции, фотоэффекта;
  • вклад российских и зарубежных ученых, оказавших наибольшее влияние на развитие физики;
  • описывать и объяснять физические явления и свойства тел: движение небесных тел и искусственных спутников Земли; свойства газов, жидкостей и твердых тел; электромагнитную индукцию, распространение электромагнитных волн; волновые свойства света; излучение и поглощение света атомом; фотоэффект;
  • отличать гипотезы от научных теорий; делать выводы на основе экспериментальных данных; приводить примеры, показывающие, что: наблюдения и эксперимент являются основой для выдвижения гипотез и теорий, позволяют проверить истинность теоретических выводов; физическая теория дает возможность объяснять известные явления природы и научные факты, предсказывать еще неизвестные явления;
  • приводить примеры практического использования физических знаний: законов механики, термодинамики и электродинамики в энергетике; различных видов электромагнитных излучений для развития радио и телекоммуникаций, квантовой физики в создании ядерной энергетики, лазеров;
  • воспринимать и на основе полученных знаний самостоятельно оценивать информацию, содержащуюся в сообщениях СМИ, Интернете, научно-популярных статьях;
  • использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • обеспечения безопасности жизнедеятельности в процессе использования транспортных средств, бытовых электроприборов, средств радио- и телекоммуникационной связи.;
  • оценки влияния на организм человека и другие организмы загрязнения окружающей среды;
  • рационального природопользования и защиты окружающей среды.
  • Принцип суперпозиции и границы его применения

    Принцип суперпозиции характерен тем, что он встречается во многих разделах физики. Это некоторое положение, которое применяется при ряде случаев. Это один из общих физических законов, на которых строится физика, как наука. Этим он и примечателен для учёных, которые применяют его в разных ситуациях.

    Если рассмотреть принцип суперпозиции в самом общем смысле, то согласно ему, сумма воздействия внешних сил, действующих на частицу, будет складываться из отдельных значений каждой из них.

    Данный принцип применяется к различным линейным системам, т.е. таким системам, поведение которых можно описать линейными соотношениями. Примером может послужить простая ситуация, когда линейная волна распространяется в какой-то определённой среде, в этом случае её свойства будут сохраняться даже под действием возмущений, возникающих из-за самой волны. Эти свойства определяются как конкретная сумма эффектов каждой из гармоничных составляющих.

    Сферы применения

    Как уже было сказано, принцип суперпозиции имеет достаточно широкие сферы применения. Наиболее ярко его действие можно увидеть в электродинамике. Однако важно помнить, что рассматривая принцип суперпозиции, физика не считает его конкретным постулатом, а именно следствием из теории электродинамики.

    Например, в электростатике данный принцип действует при изучении электростатического поля. Система зарядов в конкретной точке создаёт напряжённость, которая будет складываться из суммы напряжённостей полей каждого из заряда. Данный вывод используется на практике, потому что с его помощью можно сосчитать потенциальную энергию электростатического взаимодействия. В этом случае нужно будет подсчитать потенциальную энергию каждого отдельного заряда.

    Это подтверждается уравнением Максвелла, которое линейно в вакууме. Отсюда также следует тот факт, что свет не рассеивается, а распространяется линейно, поэтому отдельные лучи не взаимодействуют друг с другом. В физике это явление часто называют принципом суперпозиции в оптике.

    Стоит также отметить, что в классической физике принцип суперпозиции вытекает из линейности уравнений отдельных движущихся линейных систем, поэтому является приближенным. Он основывается на глубоких динамических принципах, но приближенность делает его не универсальным и не фундаментальным.

    В частности сильное гравитационное поле описывается другими уравнениями, нелинейными, поэтому и принцип не может применяться в данных ситуациях. Макроскопическое электромагнитное поле также не подчиняется данному принципу, так как зависит от воздействия внешних полей.

    Однако принцип суперпозиции сил является фундаментальным в квантовой физике. Если в других разделах он применяется с некоторыми погрешностями, то на квантовом уровне работает достаточно точно. Любая квантомеханическая система изображается из волновых функций и векторов линейного пространства, и если она подчиняется линейным функциям, то её состояние определяется по принципу суперпозиции, т.е. складывается из суперпозиции каждого состояния и волновой функции.

    Границы применения достаточно условны. Уравнения классической электродинамики линейны, но это не является основным правилом. Большинство фундаментальных теорий физики строятся по нелинейным уравнениям. Это значит, что в них принцип суперпозиции выполняться не будет, сюда можно отнести общую теорию относительности, квантовую хромодинамику, а также теорию Янга-Миллса.

    В некоторых системах, где принципы линейности применимы только отчасти, может условно применяться и принцип суперпозиции, например, слабые гравитационные взаимодействия. Кроме того, при рассмотрении взаимодействия атомов и молекул принцип суперпозиции также не сохраняется, этим объясняется разнообразие физических и химических свойств материалов.

    yurist-moscow.ru

    Это интересно:

    • Вычет по подоходному налогу на строительство Имущественный вычет по подоходному налогу Вы можете добавить тему в список избранных и подписаться на уведомления по почте. Добрый день! Подскажите, пожалуйста по документам, которые работник должен предоставить в бухгалтерию для применения ему имущественного вычета по подоходному налогу […]
    • Защита прав потребителя ст20 Закон РБ О защите прав потребителейСтатья 20. Права потребителя в случае реализации ему товара ненадлежащего качества 1.1. замены недоброкачественного товара товаром надлежащего качества; 1.2. соразмерного уменьшения покупной цены товара; 1.3. незамедлительного безвозмездного устранения […]
    • Сбербанк зарплатный реестр Зарплатный проект в Сбербанке С нами более 450 000 компаний Зачисление зарплаты за 90 минут в любой город страны Самая большая сеть отделений и банкоматов в России Круглосуточная поддержка вашего бизнеса Преимущества зарплатного проекта Сбербанка Удобный интернет-банк Сбербанк бизнес […]
    • Нотариусы одесской области Нотариусы одесской области Первая Одесская государственная нотариальная контора Адрес 65026, г. Одесса, ул. Ланжероновская, 26 Телефон (048) 705-13-17, 705-13-18, 705-13-19, 705-13-20, 705-13-21, 705-13-22 Вторая Одесская государственная нотариальная контора Адрес 65012, г. Одесса, ул. […]
    • Порядок ведения реестр муниципального имущества Об утверждении Порядка ведения реестра муниципального имущества Памятинского сельсовета Белозерского района Курганской области 1-1 от 20.01.2017 Памятинская сельская ДумаБелозерского районаКурганской области РЕШЕНИЕ от 20 января 2017 года № 1-1с.Памятное Об утверждении Порядка ведения […]
    • Путин накопительная пенсия О ВНЕСЕНИИ ИЗМЕНЕНИЙ В ФЕДЕРАЛЬНЫЙ ЗАКОН О ДОПОЛНИТЕЛЬНЫХ СТРАХОВЫХ ВЗНОСАХ НА НАКОПИТЕЛЬНУЮ ПЕНСИЮ И ГОСУДАРСТВЕННОЙ ПОДДЕРЖКЕ ФОРМИРОВАНИЯ ПЕНСИОННЫХ НАКОПЛЕНИЙ Принят Государственной Думой 22 мая 2018 года Одобрен Советом Федерации 30 мая 2018 года Внести в Федеральный закон от 30 […]
    • Постановка ударений в словах правило Постановка ударений в словах правило ● Ударный слог полной формы ряда прилагательных остаётся ударным и в краткой форме: красИвый – красИв – красИва – красИво – красИвы; немЫслимый – немЫслим – немЫслима – немЫслимо – немЫслимы . ● У некоторых частотных прилагательных с подвижным […]
    • 147 приказ об уведомлении 147 приказ об уведомлении ФЕДЕРАЛЬНАЯ МИГРАЦИОННАЯ СЛУЖБА от 28 июня 2010 года N 147 О формах и порядке уведомления Федеральной миграционной службы об осуществлении иностранными гражданами трудовой деятельности на территории Российской Федерации (с изменениями на 12 марта 2015 […]