Динамика возврата это

admin

Динамика ландшафтов.

Любая геосистема подвержена постоянным изменениям, которые протекают во времени. Изменения эти носят разнообразный характер. Есть изменения направленные, которые приводят к перестройке структуры геосистемы, есть изменения, которые повторяются с различной скоростью – изо дня в день, из года в год. Нужно иметь в виду, что изменения происходят в определенном временном интервале.

Таким образом, в ландшафте происходят функциональные, пространственные и структурные изменения, которые называются его динамикой.

Динамика ландшафта – функциональные пространственные и структурные изменения, происходящие в природно-территориальном комплексе.

Хорологическая динамика. Это динамика ареала, пространственное изменение границ ландшафтных комплексов. Примером хорологической динамики служит смещение природных зон. Например, непрерывные пространственные изменения претерпевает береговая линия морей, озер и рек; продвигается вперед или отступает кромка ледников; движется вверх к водоразделу незакрепленный овраг; постепенно продвигается на пойму реки овражно-балочный конус выноса; в русле реки смещаются вверх тесно связанные между собой перекаты и плесы.

Структурная динамика это изменение морфологического строения ландшафтного комплекса и взаимосвязей между слагающими его структурными частями.

Например, только что образованное озеро в горах или пруд в балке на равнине. Через несколько лет в водоемах появятся отмели и тростниково-камышовые зарос­ли — новые структурные единицы в ранге фаций и урочищ.

В сложном балочном урочище вследствие активи­зации эрозионных и карстовых процессов образовались короткие боковые овраги и небольшие карстовые воронки. В данном случае балка как тип урочища со­хранилась, но изменилась ее морфологическая струк­тура за счет появления новых фаций — боковых ов­рагов и провальных воронок.

Перестройка в структуре часто бывает настолько значительной, что изменения в ландшафте выходит за рамки внутритиповых и один тип ландшафтного ком­плекса переходит я другой. Подобные межтиповые из­менения можно проследить на примере западинных урочищ Окско-Донской низменной равнины. В годы, сов­падающие с влажным климатическим циклом, когда повышается уровень грунтовых вод, в степных запади­нах Окско-Донской равнины часты неглубокие озера с характерной водной растительностью и обилием гнез­дящейся водоплавающей птицы. В более сухие периоды уровень грунтовых вод понижается, озера превращают­ся в кочкарные низинные болота.

Временная динамика объединяет в себе из­менения в ландшафте связанные со временем, длительностью и характером ритмичности динамических проявлений. Различают три ее разновидности.

1. Динамика функционирования — момен­тальный (время наблюдения) срез процессов обмена веществом и энергией в ландшафтном комплексе. Это своего рода элементарная точка отсчета временной ди­намики ландшафта. Из сопоставления таких срезов вре­мени в различные часы и дни наблюдений складыва­ются наши общие представления о динамике ландшаф­та. Динамика функционирования ландшафта служит непосредственным объектом изучения физико-географических и биогеоценологических стационаров, метеороло­гических станций, а также высших учебных заведений.

2. Циклическая динамика — изменения в ланд­шафтном комплексе по замкнутому кругу в более или менее строго очерченные отрезки времени. Широко из­вестные проявления циклический динамики — суточные, лунно-суточные и сезонные изменения в ландшафте.

а) Суточная динамика. Смена дня и ночи влечет за собой изменения в температуре, влажности и движении воздуха на протяжении суток. В наших широтах внутрисуточная смена погоды наглядно прослеживается летом в антициклональных условиях: солнечное и тихое ут­ро — кучевые облака в полдень — грозы с порывами ветра во второй половине дня. Аналогичная картина, только другого масштаба и интенсивности, и притом круглый год, наблюдается в некоторых влажных тропи­ческих странах.

б) Лунно-суточная динамика — приливо-отливные из­менения в ландшафте, вызванные суммарным притя­жением Луны и Солнца. Так как сила притяжения Луны в 2,17 раза превосходит силу солнеч­ного притяжения, продолжительность приливо-отлив­ного цикла соответствует лунным суткам (24 ч 60 мин). Приливы в морях бывают полусуточными, суточными и смешанными. Наибольшей величины (до 15 — 18 м) они достигают у изрезанных побережий окраинных морей и океанских заливов. Приливная волна на­блюдается также в устьях некоторых крупных рек. На р. Амазонке поророко — приливная волна высотой до 5м — с большой скоростью несется на 300 км вверх по реке.

в) Сезонная (годичная) динамика. Степень выражен­ности и факторы, ее обусловливающие, неодинаковы на разных широтах. Контрастны и хорошо выражены все четыре сезона года в умеренном поясе, на севере суб­тропиков и на юге полярного пояса. Определяющим ее фактором здесь служит изменение термических усло­вий. В зоне тропических саванн ведущим фактором се­зонной динамики становится изменение условий увлаж­нения. Для годичной динамики ландшафтов саванн ха­рактерно наличие двух резко контрастных сезонов — сухого и влажного. В зоне влажных тропических лесов температура воздуха и количество осадков мало меняются на протяжении года и выделение сезонов здесь теряет свой смысл.

Одним из важнейших методов изучения сезонной динамики ландшафтов служат фенологические наблюде­ния я составляемые на их основе календари природы. Фенологические наблюдения по четко продуманной программе — один из наиболее доступных методов изу­чения динамики ландшафтов.

3. Периодическая динамика — изменения ланд­шафта с повторением его состояний, напоминающим ис­ходное, в сроки различной продолжительности. Нагляд­ный пример периодической динамики — повторение тя­желых засух в лесостепных и степных районах или су­ровых малоснежных зим, вызывающих настолько серьез­ные нарушения в растительности и животном мире, что они сказываются на протяжении целого ряда после­дующих лет.

Распространенным видом проявления периодичес­кой динамики служат землетрясения и вулканические извержения, трансгрессии и регрессии морей, смена лед­никовых эпох межледниковыми в четвертичный период. Все эти примеры характеризуют периодичность длитель­ной во времени направленной динамики ландшафтных комплексов.

а) Флуктуирующая динамика — незначительные; ко­лебательного характера изменения ландшафтного ком­плекса; синонимом флуктуирующей динамики мог бы служить термин пульсирующая динамика.

Проявления флуктуирующей динамики очень разнообразны. Прекрасный пример ее изменения из года в год — травостой злаковых степей. Постоянными в нем остаются многолетние дерновинные злаки — компонен­ты степного травостоя: ковыль, типчак, тонконог. Они не образуют сплошного задернения и междерновииные участки, голые в сухое лето, во влажные годы захватываются однолетниками — ин­гредиентами степного травостоя, придающими южной степи не свойственный ей красочный вид. В более се­верных разнотравно-луговых степях флуктуация выра­жается в том, что к постоянным ежегодным аспектам присоединяются аспекты эпизодические, наблюдающий­ся или во влажные, или в сухие годы. Такие эпизоди­ческие аспекты в степях Центрально-Черноземного за­поведника образуют валериана русская, первоцвет ве­сенний, ракитник русский, шалфей поникший, василек шероховатый и др.

Не менее отчетливо прослеживается флуктуирую­щая динамика на пойменных лугах. Ежегодный состав и урожайность пойменных лугов зависят от интенсив­ности аллювиального процесса — высоты и длительности половодья.

Направленная динамика, или динамика развития.

Направленная динамика, или развития, предпола­гает устойчивые, односторонне направленные изменения ландшафта с неоднократной сменой его состояний и трансформацией структур.

Развитие это необратимое, направленное, закономерное изменение материальных и идеальных объектов.

Любое развитие протекает не прямолинейно. По своей направленности развитие принято делить на прогрессивное и регрессивное. Первое из них предпо­лагает движение от низшего к высшему, от простого к более сложному, второе — от высшего к низшему, от сложного к более простому. Регресс не означает прос­того возврата к старому. Как и все остальные тен­денции или стадии развития, регресс представляет со­бой процесс качественного обновления систем, но с той специфической особенностью, что уровень организации новообразований менее высок, чем у исходных форм.

Прогрессивное развитие ландшафтного комплекса характеризуется нарастанием его биологической про­дуктивности с одновременным усложнением структуры и ростом стабильности. Таков ход развития типов ланд­шафта в направлении: пустыня — полупустыня — степь — лесостепь (саванна тропиков). Лесостепь — заключительная стадия прогрессивного ряда развития.

Регрессивным является развитие ландшафтов в направлениях: лес — болото; лесостепь — степь — полупустыня — пустыня (рис. 10).

В региональном аспекте прогрессивным следует считать развитие комплексов в сторону оптимума ланд­шафта. Один и тот же процесс в разных региональ­ных условиях может определять различную направленность в развитии ландшафтных комплексов.

studfiles.net

Стек: что это такое и применение

Стек — это феномен программирования и естественное решение. Стек сразу пришел в компьютерное дело и стал таким «родным», как будто именно с него все начиналось.

Без стека не работает процессор, нет рекурсии и эффективные вызовы функций организовать невозможно. Любой алгоритм может обойтись без очереди, списка, коллекции, массива или системы организованных объектов, но без памяти и стека не работает ничего, в том числе все перечисленное.

На заре начала: процессор, память и стек

Идеальная память обеспечивает адресацию прямо к значению — это уровни машины и языка высокой степени. В первом случае процессор последовательно перебирает адреса памяти и выполняет команды. Во втором случае программист манипулирует массивами. В обоих эпизодах есть:

  • адрес = значение;
  • индекс = значение.
  • Адрес может быть абсолютным и относительным, индекс может быть цифровым и ассоциативным. По адресу и индексу может находиться другой адрес, а не значение, но это детали косвенной адресации. Без памяти процессор работать не может, а без стека команд и данных — он, как лодка без весел.

    Стопка тарелок — традиционная новелла о сути стека: понятие stack и перевод в общебытовом сознании. Нельзя взять тарелку снизу, можно брать только сверху, и тогда все тарелки будут целы.

    Все, что последним приходит в стек, уходит первым. Идеальное решение. По сути, stack, как перевод одного действия в другое, трансформирует представления об алгоритме как последовательности операций.

    Суть и понятие стека

    Процессор и память — основные конструктивные элементы компьютера. Процессор исполняет команды, манипулирует адресами памяти, извлекает и изменяет значения по этим адресам. На языке программирования все это трансформируется в переменные и их значения. Суть стека и понятие last in first out (LIFO) остается неизменным.

    Аббревиатура LIFO уже не используется так часто, как раньше. Вероятно потому, что списки трансформировались в объекты, а очереди first in first out (FIFO) применяются по мере необходимости. Динамика типов данных потеряла свою актуальность в контексте описания переменных, но приобрела свою значимость на момент исполнения выражений: тип данного определяется в момент его использования, а до этого момента можно описывать что угодно и как угодно.

    Так, стек — что это такое? Теперь вы знаете, что это вопрос неуместный. Ведь без стека нет современного программирования. Любой вызов функции — это передача параметров и адреса возврата. Функция может вызвать другую функцию — это опять передача параметров и адреса возврата. Наладить механизм вызова значений без стека — это лишняя работа, хотя достижимое решение, безусловно, возможное.

    Многие спрашивают: «Стек — что это такое?». В контексте вызова функции он состоит из трех действий:

    • сохранения адреса возврата;
    • сохранения всех передаваемых переменных или адреса на них;
    • вызова функции.

    Как только вызванная функция исполнит свою миссию, она просто вернет управление по адресу возврата. Функция может вызывать любое количество других функций, так как ограничение накладывается только размером стека.

    Свойства стека

    Стек — это не абстрактный тип данных, а реальный механизм. На уровне процессора — это «движок», который уточняет и дополняет работу основного цикла процессора. Как битовая арифметика, стек фиксирует простые и очевидные правила работы. Это надежно и безопасно.

    Характерные свойства стека — это его размер и длина элементов. На уровне процессора все определяется разрядностью, адресацией памяти и физикой доступа к ней. Интересная особенность и традиция: стек растет вниз, то есть в сторону уменьшения адресов памяти, а память программ и данных — вверх. Это обычно, но не обязательно. Здесь важен смысл — пришел последним, а ушел первым. Это удивительно простое правило позволяет строить интересные алгоритмы работы прежде всего на языках высокого уровня. Теперь вы не будете спрашивать, стек — что это такое.

    Безукоризненная работа аппаратного обеспечения уже очень давно является нормой, но на передовом крае информационных технологий идея стека обретает новые и перспективные применения.

    По сути не важно, что такое стек на уровне процессора. Это естественная составляющая архитектуры компьютера. Но в программировании стек зависит от конкретного применения и способностей программиста.

    Массивы, коллекции, списки, очереди . Стек!

    Часто люди задают вопрос: «Стек — что это такое?». «Программирование» и «систематизация» — интересные понятия: они не синонимы, но так тесно связаны. Программирование прошло очень быстро такой длительный путь, что достигнутые вершины кажутся идеальными. Скорее всего, это не так. Но очевидно другое.

    Идея стека стала привычной не только на уровне различных языков программирования, но и на уровне их конструкций и возможностей по созданию типов данных. Любой массив имеет push и pop, а понятия «первый и последний элементы массива» стали традиционными. Раньше были просто элементы массива, а сегодня есть:

  • элементы массива;
  • первый элемент массива;
  • последний элемент массива.
  • Операция помещения элемента в массив сдвигает указатель, а извлечение элемента с начала массива или с его конца имеет значение. По сути это тот же стек, но в применении к другим типам данных.

    Особенно примечательно, что популярные языки программирования не имеют конструкции stack. Но они предоставляют его идею разработчику в полном объеме.

    www.syl.ru

    Динамика работы электромагнита

    Время срабатывания электромагнита tср – это время с момента подачи напряжения на обмотку электромагнита до момента остановки его якоря.

    где время трогания, представляющее собой время с начала подачи напряжения до начала движения якоря;

    время движения, то есть время перемещения якоря из положения при начальном зазоре до положения при конечном зазоре

    К моменту остановки якоря переходный процесс еще не закончен и ток в обмотке продолжает возрастать от значения до установившегося значения

    Уравнение переходного процесса можно получить из уравнения электрического равновесия обмотки

    . (7.9)

    В начальный момент между якорем и сердечником рабочий зазор достаточно велик, поэтому магнитную цепь можно считать ненасыщенной, а индуктивность обмотки постоянной.

    Так как ито (7.9) можно записать в виде

    (7.10)

    Решение последнего уравнения имеет вид:

    , (7.11)

    где установившееся значение тока;

    электромагнитная постоянная времени цепи.

    Для момента трогания якоря на основании (7.11) можно записать выражение

    , (7.12)

    где ток трогания;

    время нарастания тока от нуля до значения

    Из (7.12) время трогания определится:

    (7.13)

    Изменение тока в обмотке при включении показано на рис. 7.1.

    Как только якорь приходит в движение (точка , см. рис. 7.1), зазор уменьшается и его магнитная проводимостьи индуктивность обмотки увеличиваются, поскольку

    Так как индуктивность изменяется во времени, то (7.9) примет вид:

    (7.14)

    Рис. 7.1. Изменение тока в обмотке при включении

    При уменьшении рабочего зазора поэтому ток, а следовательно, иначинают уменьшаться, так какВ точке(см. рис. 7.1) уменьшение тока прекращается (зазор выбран). Далее (при поджиме якоря) ток меняется по закону

    (7.15)

    где электромагнитная постоянная времени при.

    Начало движения якоря имеет место при . При движении якоря ток вначале еще немного растет, а затем снижается до значения, меньшего тока трогания. Таким образом, при изменении зазора ток в обмотке значительно меньше установившегося значения, поэтому и сила тяги, развиваемая электромагнитом, в динамике меньше, чем в статике при установившемся токе

    Лекция № 8 Электромеханические аппараты автоматики

    К электромеханическим аппаратам автоматики относятся электромеханические реле, датчики и различные исполнительные устройства.

    К электромеханическим реле относятся электромагнитные, магнитоэлектрические, индукционные, электротепловые, пьезоэлектрические, электро- и ферродинамические, магнитострикционные, вибрационные, электретные и др.

    Особое место среди них занимают герконовые реле (реле с магнитоуправляемыми герметизированными контактами).

    Для суждения о работе реле используется понятие характеристика управления. Она имеет релейный характер: скачкообразное увеличение выходной величины `У` при некотором значении входной электрической воздействующей величины `X` (ток, напряжение, частота) и такое же скачкообразное уменьшение выходной величины, но уже при другом значении входной величины. При всех остальных значениях воздействующей входной величины выходная величина не меняется или изменяется незначительно.

    Реле – это автоматический аппарат релейного действия, в основном предназначенный для коммутации цепей управления более мощных аппаратов, сигнализации, связи и пр., а также для суммирования и размножения сигналов. Характеристики управления реле приведены на рис. 8.1, а устройство реле показано на рис. 8.2.

    Рис. 8.1. Примеры характеристик управления аппаратов

    а, б, в, д – электромеханических; г – статических электрических;

    а, б, г, д – одностабильных; в – двустабильных; а, б, г – максимальных;

    д – минимальных; а, г, д – работающих на замыкание; б — работающих на размыкание; параметр срабатывания;параметр возврата (отпускания);рабочий параметр;максимальное

    и минимальное значение выходного параметра

    В зависимости от выполняемой функции электромеханические реле подразделяются на логические и измерительные.

    Электромеханическое логическое реле предназначено для срабатывания и отпускания (возврата в исходное состояние) при изменении входной воздействующей величины, ненормируемой по точности.

    Рис. 8.2. Простейшее электромагнитное реле

    с одним замыкающим узлом:

    1 – обмотка; 2 – ярмо; 3 – изоляционная планка; 4, 11 – упоры;

    5, 6 – контактные пружины; 7, 8 – контакт-детали; 9 – толкатель;

    10– якорь; 12 – сердечник.

    Входная воздействующая величина электромеханического логического реле – это электрическая величина, на которую реле реагирует, если она воздействует на реле при заданных условиях. Электромеханические логические реле подразделяются на промежуточные, указательные и реле времени.

    Промежуточные реле предназначены для размножения и усиления поступающих к ним сигналов.

    Указательные реле – для указания срабатывания и возврата других коммутационных аппаратов.

    Реле времени – для создания выдержки времени.

    Электромеханическое измерительное реле предназначено для срабатывания с определенной точностью при заданном значении или значениях характеристической величины.

    Характеристическая величина электромеханического измерительного реле – это электрическая величина, нормируемая по точности и определяющая функциональный признак реле. Для её образования необходима одна или несколько входных воздействующих величин электрического измерительного реле.

    Для пояснения разницы между логическими и измерительными реле сравним два реле, имеющих одну входную воздействующую величину – электрическое напряжение.

    Логическое реле предназначено для срабатывания и возврата при дискретном изменении входной воздействующей величины от нуля до логической единицы. Это означает – напряжение подано или не подано на вход реле.

    В отличие от логического реле, на измерительное реле напряжение подается постоянно, т.е. входная величина измеряется постоянно. Напряжение для него не только входная величина, но и характеристическая величина.

    Максимальное электромеханическое реле – это измерительное электрическое реле, срабатывающее при значениях характеристической величины, больших заданного значения.

    Минимальное электромеханическое реле – это измерительное реле, срабатывающее при значениях характеристической величины, меньших заданного значения.

    Измерительные реле бывают следующих видов:

    со шкалой уставок;

    без шкалы, но с возможностью изменения уставки;

    с фиксированной настройкой.

    На вход измерительного реле (в отличие от логического) одновременно могут подаваться несколько входных воздействующих величин.

    Срабатывание электромеханического реле – это выполнение реле функции, для которой оно предназначено.

    Возврат электрического реле – переход в исходное состояние из состояния, в котором оно находилось после срабатывания.

    Значение параметра срабатывания (возврата) электромеханического реле определяется значением входной воздействующей или характеристической величины, при которой реле соответственно срабатывает или возвращается при заданных условиях (см. рис. 8.1).

    Отношение значения параметра возврата к значению параметра срабатывания называется коэффициентом возврата .

    Для максимальных реле (см. рис. 8.1, а,б,г); для минимальных(см. рис. 8.1, д). Чем ближе к единице значение коэффициента возврата, тем в более узких пределах реле будет осуществлять контроль входного параметра.

    Для надежного срабатывания логического реле рабочее значение входной воздействующей величины выбирается с некоторым запасом (см. рис. 8.1, а).

    Коэффициент запаса по входной воздействующей величине определяется отношением

    В зависимости от того, возвращается ли реле, изменившее своё состояние под воздействием входной воздействующей или характеристической величины в прежнее состояние после устранения этого воздействия, реле подразделяются на одностабильные (см. рис. 8.1, а, б, г,д) и двустабильные (см. рис. 8.1, в). Одностабильные реле возвращаются, а для возврата двустабильных реле необходимо приложить другое воздействие.

    Существуют реле с нормируемым и ненормируемым временем.

    Заданное значение выдержки времени, при котором реле с нормируемым временем должно срабатывать при определенных условиях, называется уставкой выдержки времени.

    Промежуточные и указательные логические реле имеют ненормируемое время, а реле времени – нормируемое.

    Измерительное реле с нормируемым временем может быть: с независимой выдержкой времени, с зависимой выдержкой времени и с ограниченно зависимой выдержкой времени.

    На рис. 8.3 приведены характеристики зависимости времени срабатывания от токав максимальном реле тока.

    Рис. 8.3. Характеристика зависимости :

    а – независимая; б – зависимая; в – ограниченно зависимая;

    г – зависимая, с отсечкой выдержки времени

    По роду управляющего тока реле подразделяют на реле постоянного и переменного токов. У некоторых электромагнитных реле изменение рода тока управления требует только замены катушки и изредка других деталей. Такие реле называются универсальными.

    Электрические реле постоянного тока, функционирование которых зависит от полярности их воздействующей величины, называются поляризованными.

    Различают два режима работы реле: режим нормальных коммутаций, когда контакт коммутирует цепь многократно; режим предельных (редких) коммутаций, когда контакт коммутирует цепь несколько раз.

    К условиям коммутации относятся:

    частота коммутаций и параметры коммутируемой цепи: род тока, частота переменного тока, напряжение источника;

    ток цепи до размыкания;

    соотношение замыкаемого и размыкаемого токов;

    характер коммутируемой цепи.

    На постоянном токе коммутируемую цепь определяют постоянной времени электрической цепи где— индуктивность;активное сопротивление цепи нагрузки.

    На переменном токе коммутируемую цепь характеризуют сдвигом фаз между током цепи и напряжением источника , собственной частотойи коэффициентом превышения амплитуды восстанавливающего напряжения

    К наиболее часто указываемым в технической документации коммутационным характеристикам относятся:

    коммутационная износостойкость – количество циклов включения или отключения, гарантированное изготовителем при работе реле в режиме нормальных коммутаций при заданных условиях (напряжение, постоянная времени, cosφ и т.д.);

    коммутационная способность циклического действия – наибольшее значение тока, которое контактное реле может последовательно замыкать и размыкать в режиме редких коммутаций при заданных условиях (напряжение, число циклов, постоянная времени, cosφ и т.д.);

    предельная отключающая способность – наибольшее значение тока, которое контактное реле способно размыкать в заданных условиях.

    К характеристикам контактов реле также относятся:

    предельный длительный ток цепи контакта – наибольшее значение тока, которое предварительно замкнутая цепь контакта способна выдержать длительно в заданных условиях;

    предельно длительный ток цепи контакта – наибольшее значение тока, которое предварительно замкнутая цепь контакта способна выдержать в заданных условиях в течение заданного короткого промежутка времени;

    электрическая прочность межконтактного промежутка;

    отказ (различают временный отказ – сбой, самоустраняющийся при последующей коммутации, и постоянный отказ, не устраняющийся сам по себе).

    При разработке электромеханических реле проводится согласование их тяговых и механических характеристик.

    Тяговая характеристика электромагнитного реле – это, например, зависимость электромагнитной силы или электромагнитного момента, действующей (действующего) на якорь и приведенной (приведенного) к рабочему зазору, от значения этого зазора (от углаповорота якоря).

    Тяговая характеристика (или) при медленном перемещении якоря, если можно пренебречь изменением тока в обмотке, называетсястатической, а при быстром – динамической.

    Под механической характеристикой (или) электромагнитного реле обычно понимают зависимость суммарной силы (момента), действующей (действующего) на якорь и приведенной (приведенного) к рабочему зазору, от значения этого зазора (от угла поворота якоря).

    Механическая характеристика при медленном перемещении, когда можно пренебречь силами инерции движущихся масс, называется статической механической характеристикой.

    Для нормальной работы реле его динамические тяговые и механические характеристики при срабатывании и возврате должны быть согласованы.

    На рис. 8.4 статическая характеристика 1 при МДС обмотки соответствующей срабатыванию реле, проходит выше, а статическая тяговая характеристика 2 при МДС обмоткисоответствующей возврату реле, ниже, чем статическая характеристика 3 при всех зазорах (отдо).

    Зазор соответствует замыканию контактов, а— отходу верхней пружины контакта от упора.

    Рис. 8.4. Согласование динамических (1), тяговых (2)

    Это интересно:

    • Отдел опеки по краснодарскому краю Отдел опеки по краснодарскому краю Граждан, обращающихся в Центральный отдел Управления Росреестра по Краснодарскому краю, нередко интересует вопрос: в каких случаях необходимо согласие органа опеки при отчуждение жилого помещения, в котором проживают находящиеся под опекой или […]
    • Закон о военнослужащих 76 фз статья 10 Статья 28.10. Исполнение дисциплинарных взысканий 1. Исполнение дисциплинарного взыскания должно быть начато до истечения срока давности привлечения к дисциплинарной ответственности. Если исполнение дисциплинарного взыскания в указанный срок не начато, то оно не исполняется. 2. […]
    • Заявление уфмс воронеж Отдел УФМС России по Воронежской области в Коминтерновском районе г. Воронежа Руководство Управления Начальник Викулина Ирина Викторовна Старший инспектор Филимонцева Лариса Петровна График работы по приему населения Прием: Понедельник: 18.00 - 19.45 Вторник: 14.00 - 16.00 Четверг: 14.00 […]
    • Статья об административных правонарушениях несовершеннолетних Кодекс Российской Федерации об административных правонарушениях от 30.12.2001 N 195-ФЗ ст 6.21 (ред. от 23.04.2018) Статья 6.21. Пропаганда нетрадиционных сексуальных отношений среди несовершеннолетних 2. Действия, предусмотренные частью 1 настоящей статьи, совершенные с применением […]
    • Правила моей кухни новая зеландия на русском Правила моей кухни 8 сезон Краткое описание "Правила моей кухни 8 сезон" Кулинарное шоу «Правило моей кухни» продолжает снимать сезон и набирать новых участников. Несколько команд будут между собой соревноваться, в одной команде участвуют два человека. Первом сезоне телешоу отобрали […]
    • Миром правят чувство Миром правят жажда власти, секс и чувство голода? Поделиться Для многих людей жизненный успех определяется местом, которое они занимают в «пищевой цепочке»: ты или хищник, и этим всё сказано, или травоядный. В природе всё подчинено праву сильного. Например, лев, пользуясь положением […]
    • Приказ 837 мвд рф Опубликован Приказ МВД РФ № 707 от 6 сентября 2017 г. Министр внутренних дел Владимир Колокольцев 6 сентября 2017 года подписал Приказ № 707 от 6.09.2017 года О внесении изменений в нормативные правовые акты МВД России по вопросам регистрационно-экзаменационной […]
    • Уголовный кодекс 161 ст Статья 161 УК РФ. Грабеж 1. Грабеж, то есть открытое хищение чужого имущества, - наказывается обязательными работами на срок до четырехсот восьмидесяти часов, либо исправительными работами на срок до двух лет, либо ограничением свободы на срок от двух до четырех лет, либо принудительными […]