Второй закон киргофа

admin

Господа, всем привет!

Сегодня мы рассмотрим второй закон Кирхгофа. Он чуть сложнее, чем первый закон Кирхгофа, который мы уже рассматривали ранее, поэтому я сперва дам общую формулировку, а потом мы постараемся аккуратно разобраться во всем этом деле.

Итак, второй закон Кирхгофа гласит, что алгебраическая сумма ЭДС, действующих в контуре равна алгебраической сумме падений напряжения в ветвях контура. Может быть сложновато для восприятия, если вы читаете это в первый раз, не спорю. Но сейчас попробуем разобраться более детально во всем этом. Для начала давайте определим, что же такое контур электрической цепи, где эти самые ЭДС действуют. Пожалуй, это тот случай, когда проще нарисовать картинку, чем объяснять словами. Взглянем на рисунок 1.

Рисунок 1 – Контура в схеме

На нем мы можем видеть три контура: я обозначил их красным, оранжевым и синим цветами. То есть контур – это некоторая замкнутая часть электрической цепи, состоящая из нескольких ветвей.

То есть что говорит второй закон Кирхгофа? У нас есть большая и сложная электрическая схема. В ней много различных контуров. Будем рассматривать подробно один из этих контуров, любой на выбор. И вот если мы в этом контуре сложим ЭДС всех источников, какие там есть, то их сумма будет равна сумме падений напряжения на всех сопротивлениях этого контура. И это верно для любого контура в нашей схеме. Довольно интересный факт. И если про первый закон Кирхгофа можно говорить, что он интуитивно очевиден, то здесь, вообще говоря, это не совсем так. А поскольку он не очевиден на первый взгляд, тем больше поводов показать его верность математически.

Господа, прошу обратить внимание на рисунок 2. На нем изображен один из контуров какой-то сложной электрической схемы.

Рисунок 2 – Контур схемы

Почему он именно такой, можете вы спросить? Да просто так! Я рисовал его так, как подскажет фантазия в тот момент. Вы можете смело заявить, что ваша фантазия лучше и нарисовать какой-либо другой контур с другими компонентами. Потом повторите все действия, которые я буду производить над этим контуром, и в конечном счете у вас должен получиться точно такой же результат, как и у меня.

Первым делом давайте зададимся направлением обхода контура. Это некоторое направление в контуре, которое мы принимаем за положительное. Можно в какой-то степени назвать это аналогом осей координат в математике. Направление обхода контура у нас по часовой стрелке, и я показал его синей стрелочкой на рисунке 2.

Следующим шагом нам надо расставить предполагаемое направление токов в каждой ветви. Тут опять же все целиком отдается вашей фантазии. На данном этапе можно рисовать любое направление токов. Если мы угадали – отлично, если нет – в конце всех расчетов получим ток с другим знаком. Я расставил на рисунке 2 все токи черными стрелками и рядом с ними подписал их величины (I1…I4).

А теперь внимание, господа. Пришло время вспомнить то выражение, ради получения которого я написал предыдущую статью. На всякий случай, если вдруг кто забыл, напоминаю его

Оно означает, что если потенциалы на концах ветви равны φ1 и φ2, то их разность равна ЭДС источника в ветви минус произведение тока в ветви на сопротивление в ветви.

Применим это выражение для каждой ветви нашего контура, изображенного на рисунке 2. Поскольку у нас в контуре четыре ветви, то всего мы получим четыре уравнения. Резонный вопрос – а как быть со знаками при записи этих уравнений? Правила тут два.

  • Если направление работы источника напряжения совпадает с направлением обхода контура, то берем его со знаком плюс. Если не совпадает – со знаком минус. Совсем просто: если стрелка в источнике напряжения совпадает со стрелкой обхода, то Е в уравнении пишется без изменения знака, если стрелки в разные стороны – то надо поставить минус перед E.
  • Если направление тока, которое мы сами выбрали чуть раньше, совпадает с направлением обхода, то в нашем уравнении перед произведением тока на сопротивление так и остается знак минус. Если они направлены в разные стороны, то знак минус меняем на плюс.
  • Пользуясь этими простыми правилами, запишем уравнения для каждой ветви.

    Очевидно, что если в цепи нет источника ЭДС, то у нас не будет первого слагаемого в правой части. А если нет сопротивления, то не будет второго слагаемого в правой части. Собственно, это и видно из составленных уравнений.

    Господа, надеюсь вы помните, что с уравнениями в одной системе можно творить всякие интересные штуки? Например, можно все их сложить между собой (правые и левые части). Легко заметить, что при сложении всех этих четырех уравнений в левой части будет нолик, то есть все потенциалы волшебным образом самоликвидируются. Сделаем это! Получим

    А теперь давайте перенесем все слагаемые с ЭДС в одну сторону, а с током и сопротивлением – в другую. Имеем

    А имеем мы, собственно, второй закон Кирхгофа. Все честно, как я и писал в начале – алгебраическая сумма ЭДС, действующих в контуре равна алгебраической сумме падений напряжения в ветвях контура. Надеюсь, господа, после статьи про закон Ома у вас не возникает вопросов, почему произведение тока на сопротивление – это падение напряжения на сопротивлении? Если возникает – срочно, очень срочно, прямо сейчас пройдитесь по этой ссылке и разрешите эти вопросы!

    А что же все-таки тут понимается под словом алгебраическая сумма? Это словосочетание нам уже встречалось. Это значит, что складывать надо с учетом знака. А как выбирать правильно этот самый знак? Господа, взгляните еще разок на рисунок 2. Там у нас задано направление обхода контура и направление токов. Все это мы выбирали (я бы даже сказал придумывали) сами. Ну и направление работы источника еще видно по его графическому изображению.

    Так вот, если направление работы источника ЭДС совпадает с направлением обхода контура, то мы ему приписываем знак плюс, а если не совпадает – минус. Аналогично и для правой части. Если направление тока совпадет с направлением обхода, то мы пишем произведение тока на сопротивление со знаком плюс. Иначе – со знаком минус.

    Специально для труЪ-математиков привожу запись второго закона Кирхгофа с использованием хитрых значков суммирования. Вне всякого сомнения, если вы будете использовать эту запись, то произведете впечатление человека, который шарит в теме!

    Здесь у нас N источников c ЭДС Ei и M ветвей с сопротивлениями Rj и токами Ij. Разумеется, суммирование идет все так же с учетом знаков.

    Может возникнуть резонный вопрос: «Как же так? Получается, я сам все придумываю: и направление обхода, и направление токов и это значит, что знак может получиться любой. Поверну стрелку тока в другую сторону и сразу знак у слагаемого поменяется! Но ведь в реальной схеме токи всегда текут в своем направлении вне зависимости от того, что я там нарисую на листочке! Какое-то противоречие!» Господа, вопрос весьма справедливый. Но предлагаю разобраться в нем в следующей статье. Сохраним некоторую интригу на текущий момент, как принято во всяких этих сериальчиках . А сейчас – спасибо, что прочитали статью, огромной вам всем удачи, и пока!

    Вступайте в нашу группу Вконтакте

    myelectronix.ru

    ПЕРВЫЙ ЗАКОН КИРХГОФА

    Законы Кирхгофа (более корректно — правила Киргхгофа) применяются при расчете сложных (разветвленных) электрических цепей. Предлагаю рассмотреть их по очереди и начать, естественно, с первого.

    Здесь:

    • I i — ток в узле,
    • n — число проводников, сходящихся в узле,
    • токи, втекающие в узел ( I1, In ) считаются положительными,
    • вытекающие токи ( I2, I3 ) — отрицательными.
    • В таком виде этот закон звучит и выглядит, наверное, очень академично, поэтому предлагаю все несколько упростить.

      Нарисуем разветвленную электрическую цепь в более привычном виде (рис.2) и дадим такую формулировку:

      Сумма токов втекающих в узел равна сумме токов, вытекающих из узла.

      Для этого случая формула первого закона Кирхгофа примет вид: I= I1+I2+. +In , что для повседневных вычислений гораздо удобнее.

      ВТОРОЙ ЗАКОН КИРХГОФА

      Второй закон Кирхгофа определяет зависимость между падениями напряжений и ЭДС в замкнутых контурах и имеет следующий вид (рис.3) и определение:

      При отсутствии в контуре ЭДС сумма падений напряжений равна 0.

      Теперь несколько пояснений по практическому применению этого правила Кирхгофа:

      • поскольку, алгебраическая сумма требует учета знака следует выбрать направление обхода контура ( на рис.3 — по часовой стреклке), токи и напряжения, совпадающие с этим направлением считать положительными, иные — отрицательными. При затруднении в определении направления тока, возьмите произвольное, если в результате вычислений получите результат со знаком «-«, поменяйте выбранное направление на противоположенное.
      • для нашего примера можно записать:
        U1+U3-U2=0
        U4+U5-U3=0
      • кроме того, руководствуясь первым правилом Кирхгофа :
        Iвх — I1 — I2 = 0
        I1 — I3 — I4=0
        I4 — I5=0
        I2 + I3 + I5 — Iвых=0 ,
      • получаем систему из 6 уравнений, полностью описывающую рассматриваемую электрическую цепь.

        © 2012-2018 г. Все права защищены.

        Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

        eltechbook.ru

        Закон Кирхгофа

        Закон Кирхгофа (правила Кирхгофа), сформулированные Густавом Кирхгофом в 1845 году, являются следствиями из фундаментальных законов сохранения заряда и безвихревости электростатического поля.

        Закон Кирхгофа – это соотношения, выполняемые между токами и напряжениями на участках любых электрических цепей. Они позволяют рассчитывать любые электрические цепи: постоянного, переменного или квазистационарного тока.

        При формулировании правил Кирхгофа используют такие понятия, как ветвь, контур и узел электрической цепи.

      • Ветвь – участок электрической цепи с одни и тем же током.
      • Узел – точка соединения трех или более ветвей.
      • Контур – замкнутый путь, проходящий через несколько узлов и ветвей разветвлённой электрической цепи.
      • При обходе надо учесть, что ветвь и узел могут одновременно принадлежать нескольким контурам. Правила Кирхгофа справедливы как для линейных, так и для нелинейных цепей при любом характере изменения во времени токов и напряжений. Правила Кирхгофа широко применяются при решении задач электротехники за счет легкости в расчетах.

        1 закон Кирхгофа

        В цепях, состоящих из последовательно соединенных источника и приемника энергии, соотношения между током, сопротивлением и ЭДС всей цепи или на каком-либо участке цепи определяются законом Ома. Но на практике в цепях токи от какой-либо точки идут по разным путям (Рис. 1). Поэтому становиться актуальным введение новых правил для проведения расчетов электрических цепей.

        Рис. 1. Схема параллельного соединения проводников.

        Так, при параллельном соединении проводников начала всех проводников соединены в одну точку, а концы проводников – в другую точку. Начало цепи присоединяется к одному полюсу источника напряжения, а конец цепи – к другому полюсу.

        Из рисунка видно, что при параллельном соединении проводников для прохождения тока имеется несколько путей. Ток, протекая к точке разветвления А, растекается далее по трем сопротивлениям и равен сумме токов, выходящих из этой точки: I = I1 + I2 + I3.

        Согласно первому правилу Кирхгофа алгебраическая сумма токов ветвей, сходящихся в каждом узле любой цепи равна нулю. При этом направленный к узлу ток принято считать положительным, а направленный от узла – отрицательным.

        Запишем первый закон Кирхгофа в комплексной форме:

        Первый закон Кирхгофа гласит, что алгебраическая сумма токов, направленных к узлу, равна сумме направленных от узла. То есть, сколько тока втекает в узел, столько же вытекает (как следствие закона сохранения электрического заряда). Алгебраическая сумма — это сумма, в которую входят слагаемые со знаком плюс и со знаком минус.

        Рис. 2. i_1+i_4=i_2+i_3.

        Рассмотрим применение 1 закона Кирхгофа на следующем примере:

        • I1 – это полный ток, текущий к узлу А, а I2 и I3 — токи, вытекающие из узла А.
        • Тогда мы можем записать: I1 = I2 + I3.
        • Аналогично для узла B: I3 = I4 + I5.
        • Пусть, что I4 = 5 А и I5 = 1 А, получим: I3 = 5 + 1 = 6 (А).
        • Пусть I2 = 10 А, получим: I1 = I2 + I3 = 10 + 6 = 16 (А).
        • Запишем подобное соотношение для узла C: I6 = I4 + I5 = 5 + 1 = 6 А.
        • А для узла D: I1 = I2 + I6 = 10 + 6 = 16 А
        • Таким образом мы наглядно видим справедливость первого закона Кирхгофа.
        • 2 закон Кирхгофа

          При расчете электрических цепей в большинстве случаев нам встречаются цепи, образующие замкнутые контуры. В состав таких контуров, кроме сопротивлений, могут входить ЭДС (источники напряжений). На рисунке 4 представлен участок такой электрической цепи. Произвольно выбираем положительные направления токов. Обходим контур от точки А в произвольном направлении (выберем по часовой стрелке). Рассмотрим участок АБ: происходит падение потенциала (ток идет от точки с высшим потенциалом к точке с низшим потенциалом).

          • На участке АБ: φА + E1 – I1r1 = φБ.
          • БВ: φБ – E2 – I2r2 = φВ.
          • ВГ: φВ – I3r3 + E3 = φГ.
          • ГА: φГ – I4r4 = φА.
          • Складывая данные уравнения, получим: φА + E1 – I1r1 + φБ – E2 – I2r2 + φВ – I3r3 + E3 + φГ – I4r4 = φБ + φВ + φГ + φА
          • или: E1 – I1r1 – E2 – I2r2 – I3r3 + E3 – I4r4 = 0.
          • Откуда имеем следующее: E1 – E2 + E3 = I1r1 + I2 r2 + I3r3 + I4r4.
          • Таким образом, получаем формулу второго закона Кирхгофа в комплексной форме:

            Уравнение для постоянных напряжений — Уравнение для переменных напряжени —

            Теперь можем сформулировать определение 2 (второго) закона Кирхгофа:

            Второй закон Кирхгофа гласит, что алгебраическая сумма напряжений на резистивных элементах замкнутого контура, равна алгебраической сумме ЭДС, входящих в этот контур. В случае отсутствия источников ЭДС, суммарное напряжение равно нулю.

            Иначе формулируя второе правило Кирхгофа, можно сказать: при полном обходе контура потенциал, изменяясь, возвращается к начальному значению.

            При составлении уравнения напряжений для контура нужно выбрать положительное направление обхода контура, при этом падение напряжения на ветви считается положительным, если направление обхода данной ветви совпадает с ранее выбранным направлением тока ветви, в противном случае – отрицательным.

            Определить знак можно по алгоритму:

          • 1. выбираем направление обхода контура (по или против часовой стрелки);
          • 2. произвольно выбираем направления токов через элементы цепи;
          • 3. расставляем знаки для напряжений и ЭДС по правилам (ЭДС, создающие ток в контуре, направление которого совпадает с направление обхода контура со знаком «+», иначе – «-»; напряжения, падающие на элементах цепи, если ток, протекающий через эти элементы совпадает по направлению с обходом контура, со знаком «+», в противном случае – «-»).
          • Закон Ома является частным случаем второго правила для цепи.

            Приведем пример применения второго правила Кирхгофа:

            По данной электрической цепи (Рис 6) необходимо найти ее ток. Произвольно берем положительное направление тока. Выберем направление обхода по часовой стрелке, запишем уравнение 2 закона Кирхгофа:

            Знак минус означает, что выбранное нами направление тока противоположно его действительному направлению.

            Решение задач

            1. По приведенной схеме записать законы Кирхгофа для цепи.

            Дано:

          • R1
          • R2
          • R3
          • E1
          • E2
            • I1 – ?
            • I2 – ?
            • I3 – ?
            • Используя первый закон Кирхгофа, запишем уравнение для цепи. Сумма токов сходящихся в узле равна нулю. Примем входящие токи положительными, а выходящие отрицательными. Тогда:
            • Используя второй закон Кирхгофа составим уравнения для первого и второго контуров цепи.
            • Направления обхода произвольны, при этом если направление тока через резистор совпадает с направлением обхода, знак «+», если иначе, то «-». С источниками ЭДС так же.
            • Для первого контура токи I1 и I3 совпадают с направлением обхода, ЭДС Е1 также совпадает, то есть берем их со знаком «+».
            • Для первого и второго контуров по второму закону Кирхгофа получаем следующие уравнения:
            • Таким образом, получаем систему из трех уравнений, являющуюся решением задачи:
            • 2. На рисунке приведена цепь с двумя источниками ЭДС величиной 12 В и 5 В, с внутренним сопротивлением источников 0,1 Ом, работающих на общую нагрузку 2 ома. Как будут распределены токи в этой цепи, какие они имеют значения?.

              zakon-oma.ru

              Законы Кирхгофа

              Законы Кирхгофа являются одной из форм закона сохранения энергии и потому относятся к фундаментальным законам природы.

              Первый закон Кирхгофа является следствием принципа непрерывности электрического тока, в соответствии с которым суммарный поток зарядов через любую замкнутую поверхность равен нулю, т.е. количество зарядов выходящих через эту поверхность должно быть равно количеству входящих зарядов. Основание этого принципа очевидно, т.к. при нарушении его электрические заряды внутри поверхности должны были бы либо исчезать, либо возникать без видимых причин.

              Если заряды перемещаются внутри проводников, то они образуют в них электрический ток. Величина электрического тока может измениться только в узле цепи, т.к. связи считаются идеальными проводниками. Поэтому, если окружить узел произвольной поверхностью s (рис. 1), то потоки зарядов через эту поверхность будут тождественны токам в проводниках образующих узел и
              суммарный ток в узле должен быть равным нулю.

              Для математической записи этого закона нужно принять систему обозначений направлений токов по отношению к рассматриваемому узлу. Можно считать токи направленные к узлу положительными, а от узла отрицательными. Тогда для узла рис. 1 уравнение Кирхгофа будет иметь вид I 3 +I 4I 1I 2 = 0 или I 3 +I 4 =I 1 +I 2 .

              Обобщая сказанное на произвольное число ветвей сходящихся в узле, можно сформулировать первый закон Кирхгофа следующим образом:

            • алгебраическая сумма токов в любом узле электрической цепи равна нулю
            • в любом узле сумма токов направленных к узлу равна сумме токов направленных от узла

            , где p+q=n.

            Очевидно, что обе формулировки равноценны и выбор формы записи уравнений может быть произвольным. Существенным является только соглашение о знаках токов для данной цепи, т.е. в пределах описания одной электрической цепи нельзя для разных узлов использовать разные знаки для токов направленных к узлам или от узлов .

            При составлении уравнений по первому закону Кирхгофа направления токов в ветвях электрической цепи выбирают обычно произвольно. При этом необязательно даже стремиться, чтобы во всех узлах цепи присутствовали токи разных направлений. Может получиться так, что в каком-либо узле все токи сходящихся в нем ветвей будут направлены к узлу или от узла, нарушая тем самым принцип непрерывности. В этом случае в процессе определения токов один или несколько из них окажутся отрицательными, что будет свидетельствовать о протекании их в направлении противоположном принятому.

            Второй закон Кирхгофа связан с понятием потенциала электрического поля, как работы, совершаемой при перемещении единичного точечного заряда в пространстве. Если такое перемещение совершается по замкнутому контуру , то суммарная работа при возвращении в исходную точку будет равна нулю. В противном случае путем обхода контура можно было бы получать положительную энергию, нарушая закон ее сохранения.

            Каждый узел или точка электрической цепи обладает собственным потенциалом и, перемещаясь вдоль замкнутого контура, мы совершаем работу, которая при возврате в исходную точку будет равна нулю. Это свойство потенциального электрического поля и описывает второй закон Кирхгофа в применении к электрической цепи.

            Он также как и первый закон формулируется в двух вариантах, связанных с тем, что падение напряжения на источнике ЭДС численно равно электродвижущей силе, но имеет противоположный знак. Поэтому, если какая либо ветвь содержит сопротивление и источник ЭДС, направление которой согласно с направлением тока, то при обходе контура эти два слагаемых падения напряжения будут учитываться с разными знаками. Если же падение напряжения на источнике ЭДС учесть в другой части уравнения, то его знак будет соответствовать знаку напряжения на сопротивлении.

            Сформулируем оба варианта второго закона Кирхгофа , т.к. они принципиально равноценны:

            • алгебраическая сумма падений напряжения вдоль любого замкнутого контура электрической цепи равна нулю
            • Примечание: знак + выбирается перед падением напряжения на резисторе, если направление протекания тока через него и направление обхода контура совпадают; для падений напряжения на источниках ЭДС знак + выбирается, если направление обхода контура и направление действия ЭДС встречны независимо от направления протекания тока;

            • алгебраическая сумма ЭДС вдоль любого замкнутого контура равна алгебраической сумме падений напряжения на резисторах в этом контуре
            • , где p+q=n

              Примечание: знак + для ЭДС выбирается в том случае, если направление ее действия совпадает с направлением обхода контура, а для напряжений на резисторах знак + выбирается, если в них совпадают направление протекания тока и направление обхода.

              Здесь также как и в первом законе оба варианта корректны, но на практике удобнее использовать второй вариант, т.к. в нем проще определить знаки слагаемых.

              С помощью законов Кирхгофа для любой электрической цепи можно составить независимую систему уравнений и определить любые неизвестные параметры, если число их не превышает число уравнений. Для выполнения условий независимости эти уравнения должны составляться по определенным правилам.

              Общее число уравнений N в системе равно числу ветвей N в минус число ветвей, содержащих источники тока N J , т.е. N = N в — NJ .

              Наиболее простыми по выражениям являются уравнения по первому закону Кирхгофа, однако их число N 1 не может быть больше числа узлов Nу минус один.
              Недостающие уравнения составляются по второму закону Кирхгофа, т.е.

              Сформулируем алгоритм составления системы уравнений по законам Кирхгофа :

              1. определить число узлов и ветвей цепи Nу и N в ;
              2. определить число уравнений по первому и второму законам N 1 и N 2 . ;
              3. для всех ветвей (кроме ветвей с источниками тока) произвольно задать
                направления протекания токов;
              4. для всех узлов, кроме одного, выбранного произвольно, составить уравнения по первому закону Кирхгофа;
              5. произвольно выбрать на схеме электрической цепи замкнутые контуры таким образом, чтобы они отличались друг от друга по крайней мере одной ветвью и чтобы все ветви, кроме ветвей с источниками тока, входили по крайней мере в один контур;
              6. произвольно выбрать для каждого контура направление обхода и составить уравнения по второму закону Кирхгофа, включая в правую часть уравнения ЭДС действующие в контуре, а в левую падения напряжения на резисторах. Примечание: Знак ЭДС выбирают положительным, если направление ее действия совпадает с направлением обхода независимо от направления тока; а знак падения напряжения на резисторе принимают положительным, если направление тока в нем совпадает с направлением обхода.

              Рассмотрим этот алгоритм на примере рис 2.

              Здесь светлыми стрелками обозначены выбранные произвольно направления токов в ветвях цепи. Ток в ветви с R 4 не выбирается произвольно, т.к. в этой ветви он определяется действием источником тока.

              Число ветвей цепи равно 5, а т.к. одна из них содержит источник тока, то общее число уравнений Кирхгофа равно четырем.

              Число узлов цепи равно трем ( a, b и c ), поэтому число уравнений по первому закону Кирхгофа равно двум и их можно составлять для любой пары из этих трех узлов. Пусть это будут узлы a и b , тогда

              bourabai.ru

              Постоянный ток

              Прочитав статейки про первый и второй законы Кирхгофа, уважаемый читатель может сказать: «Хорошо, MyElectronix, ты рассказал мне, конечно, интересные штуки, но что мне дальше с ними делать? Пока по твоим словам я заключил, что если я соберу ручками схему, то я смогу в каждом ее узле и в каждом контуре намерить вот такие вот зависимости. Это здорово, но я хотел бы рассчитывать схемы, а не просто наблюдать зависимости!»

              Господа, все эти замечания абсолютно верные и в ответ на них можно лишь рассказать о расчете электрических схем с помощью законов Кирхгофа. Без лишних слов перейдем сразу к делу!

              Начнем с самого простейшего случая. Он изображен на рисунке 1. Допустим, ЭДС источника питания равна Е1=5 В, а сопротивления R1=100 Ом, R2=510 Ом, R3=10 кОм. Требуется рассчитать напряжения на резисторах и ток через каждый резистор.

              Господа, замечу сразу, эту задачу можно решить гораздо более простым способом, чем с применением законов Кирхгофа. Однако сейчас наша задача не искать оптимальные способы решения, а на наглядном примере рассмотреть методику применения законов Кирхгофа при расчете схем.

              Рисунок 1 – Простая схема

              В этой схеме мы можем видеть три контура. Если возник вопрос – а почему три, то рекомендую посмотреть статью про второй закон Кирхгофа . В той статье имеется практически такая же схема с наглядным пояснением методики расчета числа контуров.

              Господа, хочу отметить один тонкий момент. Хоть контура и три, независимых из них только два. Третий контур включает в себя все остальные и не может считаться независимым. И вообще всегда при всех расчетах мы должны использовать только независимые контура. Не поддавайтесь искушению записать еще одно уравнение за счет этого общего контура, ничего хорошего не выйдет .

              Итак, будем использовать два независимых контура. Для этого зададимся в каждом контуре направлением обхода контура. Как мы уже говорили, это некоторое направление в контуре, которое мы принимаем за положительное. Можно в какой-то степени назвать это аналогом осей координат в математике. Направление обхода каждого контура нарисуем синей стрелкой.

              Далее зададимся направлением токов в ветвях: просто проставим его наугад. Не важно, угадаем мы сейчас направление или нет. Если угадали, то в конце расчета мы получим ток со знаком плюс, а если ошиблись – со знаком минус. Итак, обозначим токи в ветвях черными стрелочками с подписями I1, I2, I3.

              Мы видим, что в контуре №1 направление токов I1 и I3, а также направление источника питания совпадают с направлением обхода, поэтому будем считать их со знаком плюс. В контуре №2 ток I2 совпадет с направлением обхода, поэтому будет со знаком плюс, а ток I3 направлен в другую сторону, поэтому будет со знаком минус. Запишем второй закон Кирхгофа для контура №1:

              А теперь запишем этот же закон для контура №2:

              Видим, что в контуре №2 нет источников питания, поэтому в левой части (где у нас согласно второму закону Кирхгофа стоит сумма ЭДС) у нас нолик. Итак, у нас есть два уравнения, а неизвестных-то у нас три (I1, I2, I3). А нам известно, что для нахождения трех неизвестных нужна система с тремя независимыми уравнениями. Где же взять третье недостающее уравнение? А, например, из первого закона Кирхгофа ! Согласно этому закону мы можем записать

              Господа, теперь полный порядок, у нас есть три уравнения и три неизвестных и нам остается только решить вот такую вот систему уравнений

              Подставим конкретные числа. Все расчеты будем вести в кошерной системе СИ. Рекомендую всегда считать только в ней. Не поддавайтесь искушению подставлять куда-то миллиметры, мили, килоамперы и прочее. Возможно возникновение путаницы.

              Решение таких систем рассматривается чуть ли не в начальной школе и, полагаю, не должно вызывать трудностей . Если что, есть куча математических пакетов, которые сделают это за вас, если вам лень самим ручками считай. Поэтому мы опустим процесс решения, а сразу приведем результат

              Видим, что все токи получились у нас со знаком плюс. Это значит, что мы верно угадали их направление. Да, то есть токи в схеме текут именно в том направлении, как мы нарисовали стрелочки на рисунке 1. Однако из условия задачи необходимо найти не только токи через резисторы, но и падение напряжения на них. Как это сделать? Например, с помощью уже изученного нами закона Ома . Как мы помним, закон Ома связывает между собой ток, напряжение и сопротивление. Если нам известны любые две из этих величин, мы легко можем найти третью. В данном случае мы знаем сопротивление и ток, который течет через это сопротивление. Поэтому, используя вот эту формулу

              находим напряжение на каждом резисторе

              Заметим, господа, что напряжения на резисторах R2 и R3 равны между собой. Это и логично, поскольку они соединены между собой параллельно. Однако пока не будем на этом акцентировать большое внимание, рассмотрим это лучше в другой раз.

              Итак, господа, мы решили эту простую задачку с помощью двух законов Кирхгофа и закона Ома . Но это был совсем простой пример. Давайте попробуем решить более сложную задачу. Взгляните на рисунок 2.

              Рисунок 2 – Схема посложнее

              Схема выглядит внушительно, не правда ли? Возможно, вам даже не верится, что эту схему можно легко рассчитать. Однако, господа, уверяю вас, вы обладаете всеми необходимыми знаниями для расчета этой схемы, если уже изучили мои предыдущие статьи. Сейчас вы в этом убедитесь.

              Для начала зададимся конкретными цифрами значений сопротивлений резисторов и напряжений источников.

              Пусть Е1=15 В, Е2=24 В, R1= 10 Ом, R2 = 51 Ом, R3=100 Ом, R4=1 кОм, R5=10 Ом, R6=18 Ом, R7=10 кОм.

              Найти, как и в прошлой задаче, требуется все токи в схеме и напряжения на всех резисторах.

              В этой схеме мы можем видеть три независимых контура. Обозначим их римскими цифрами I, II, III. В каждом контуре зададимся направлением обхода. Они показаны синими стрелками.

              Дальше как и в прошлый раз наугад расставим направления токов во всех ветвях и подпишем где какой ток. Видно, что всего у нас 6 ветвей и, соответственно, 6 разных токов (I1…I6).

              Теперь запишем второй закон Кирхгофа для всех трех независимых контуров.

              Второй закон Кирхгофа для контура I:

              Второй закон Кирхгофа для контура II:

              Второй закон Кирхгофа для контура III:

              У нас есть три уравнения, однако неизвестных токов аж 6. Как и в прошлой задаче для получения недостающих уравнений запишем первые законы Кирхгофа для узлов.

              Первый закон Кирхгофа для узла А:

              Первый закон Кирхгофа для узла В:

              Первый закон Кирхгофа для узла С:

              Собственно, у нас теперь есть система из 6 уравнений с 6 неизвестными. Остается только решить эту систему

              Подставляя числа, заданные в условии, получаем

              Опуская решения за пределами статьи, приведем итоговый результат

              Господа, мы видим, что почти все токи, кроме I4 получились у нас со знаками «минус». Это значит, что мы не угадали их направление, когда рисовали стрелочки на рисунке 2 . То есть все токи, кроме тока I4 на самом деле текут в противоположные стороны. А ток I4 течет так, как мы нарисовали. Хотя бы с ним мы угадали верно.

              Теперь все по тому же закону Ома ровно как в прошлом примере рассчитаем напряжения на резисторах:

              Вот и все, господа: схема рассчитана, а задачка решена. Таким образом, вы теперь обладаете весьма мощным инструментом по расчету электрических схем. С помощью двух законов Кирхгофа и закона Ома вы сможете рассчитать весьма непростые схемы, найти величины токов и их направления, а также напряжения на всех нагрузках цепи. Более того, зная токи и напряжения вы легко сможете рассчитать и мощности, которые на этих резисторах выделяются, если воспользуетесь рекомендациями из моей предыдущей статьи .

              На этом на сегодня все господа. Огромной вам всем удачи и успешных расчетов!

              Вопросы и предложения админу: This email address is being protected from spambots. You need JavaScript enabled to view it.

              Это интересно:

              • Приказ 837 мвд рф Опубликован Приказ МВД РФ № 707 от 6 сентября 2017 г. Министр внутренних дел Владимир Колокольцев 6 сентября 2017 года подписал Приказ № 707 от 6.09.2017 года О внесении изменений в нормативные правовые акты МВД России по вопросам регистрационно-экзаменационной […]
              • Какой минимальный стаж для пенсии в 2018 Трудовой стаж для выхода на пенсию в 2018 году Все трудоспособное население ждет от правительства ответа на один весьма актуальный вопрос – будет ли повышен трудовой стаж для выхода на пенсию в 2018 году? Как мы знаем, с 2015 года вступили в действие новые правила выхода пенсионеров на […]
              • Вступление постановления о наложении административного штрафа в законную силу Срок оплаты штрафа постановление было обжаловано в арбитражный суд. который отказал в удовлетворении жалобы.С какого момента считать 60 дней с момента вынесения постановления или решения суда Ответы юристов (2) Статья 32.2. Исполнение постановления о наложении административного штрафа […]
              • Платежное поручение налоги с зарплаты Образцы заполнения платежных поручений 2017-2018 С 30 ноября 2016 года заплатить налоги за организацию сможет "иное лицо" (т.е. кто угодно). Но при этом это лицо не может требовать возврат уплаченных сумм. Платежным поручением или платежка - документ банку от имени владельца (клиента) […]
              • Субсидия на приобретения жилья ветеранам боевых действий Единовременная субсидия на приобретение жилья ветеранам боевых действий в 2018 году Единовременная субсидия на приобретение жилья ветеранам боевых действий предоставляется в соответствии с мерами социальной поддержки по обеспечению их жильем, предусмотренными подпунктом 3 пункта 3 статьи […]
              • Налога на недвижимость самара Налог на имущество (недвижимость) в Самаре в 2018-2017 году Порядок, ставки и сроки уплаты налога на имущество в г. Самаре Самарской области на 2017-2018 год установлены решением Думы городского округа Самара от 24.11.2014 N 482 "О налоге на имущество физических лиц" (с изменениями, […]
              • Новокузнецк экспертиза Полное наименование: Общество с ограниченной ответственностью «Симплекс». ООО «Симплекс» осуществляет следующие виды услуг: оценка всех видов имущества (бизнес, акции, недвижимость, земельные участки, транспорт, оборудование, объекты интеллектуальной собственности и т.п.), а также […]
              • Санкт петербург развод мостов время Санкт петербург развод мостов время Развод мостов в Петербурге можно посмотреть с конца апреля по ноябрь. Это одно из самых красивых и запоминающихся зрелищ. В какие месяцы и где лучше смотреть развод мостов и как лучше подготовиться. Навигация в Петербурге открывается в конце апреля и […]