Закон архимеда и сила тяжести

admin

Сила Архимеда

Закон Архимеда — это закон статики жидкостей и газов, согласно которому на тело, погруженное в жидкость (или газ), действует выталкивающая сила (сила Архимеда), равная весу вытесненной этим телом жидкости (или газа).

где ρ — плотность жидкости (газа),
g — ускорение свободного падения,
V — объем погруженного тела (или объем той части тела, которую погрузили в жидкость (или газ)).
Архимедова сила направлена всегда противоположно силе тяжести. Она равна нулю, если погруженное в жидкость тело плотно, всем основанием прижато ко дну.
Следует помнить, что в состоянии невесомости закон Архимеда не работает.
Условия плавания тел в жидкостях и газах.

— сила тяжести, — сила Архимеда.

Зависимость давления в жидкости или газе от глубины погружения тела приводит к появлению выталкивающей силы (или иначе силы Архимеда), действующей на любое тело, погруженное в жидкость или газ.

Архимедова сила направлена всегда противоположно силе тяжести, поэтому вес тела в жидкости или газе всегда меньше веса этого тела в вакууме. Величина Архимедовой силы определяется по закону Архимеда.

Закон назван в честь древнегреческого ученого Архимеда, жившего в 3 веке до нашей эры.

Открытие основного закона гидростатики — крупнейшее завоевание античной науки. Скорее всего вы уже знаете легенду о том, как Архимед открыл свой закон: «Вызвал его однажды сиракузский царь Гиерон и говорит . А что было дальше? .

Закон Архимеда, впервые был упомянут им в трактате «О плавающих телах». Архимед писал: «тела более тяжелые, чем жидкость, опущенные в эту жидкость, будут опускаться пока не дойдут до самого низа, и в жидкости станут легче на величину веса жидкости в объеме, равном объему погруженного тела».

Еще одна формула для определения Архимедовой силы:

ИНТЕРЕСНО, что сила Архимеда равна нулю, когда погруженное в жидкость тело плотно, всем основанием прижато ко дну.

grafika.me

26. Закон Архимеда

Сборник задач по физике, Лукашик В.И.

606. К чашам весов подвешены два одинаковых железных шарика (рис. 183). Нарушится ли равновесие, если шарики опустить в жидкость? Ответ объясните.
Равновесие весов нарушится, так как архимедовы силы, действующие на шарики, будут различны. Перевесит чаша с шариком, погруженным в керосин, так как на нее будет действовать меньшая выталкивающая сила.

607. В сосуд погружены три железных шарика равных объемов (рис. 184). Одинаковы ли силы, выталкивающие шарики? (Плотность жидкости вследствие ничтожной сжимаемости на любой глубине считать одинаковой.)
Выталкивающие силы, действующие на шарики, не зависят от глубины погружения и поэтому будут равны (рис. 184)

608. Свинцовая дробинка опускается с постоянной скоростью на дно сосуда, наполненного маслом. Какие силы действуют на дробинку?
На дробинку действуют сила тяжести, выталкивающая сила и сила вязкого трения. Эти силы скомпенсированы.

609. К чашам весов подвешены две гири равного веса: фарфоровая и железная. Нарушится ли равновесие весов, если гири опустить в сосуд с водой?
При одинаковом весе гирь объем железной гирьки будет меньше объема фарфоровой, так как плотность железа больше. Поэтому, если гири опустить в сосуд с водой, на фарфоровую будет действовать большая выталкивающая сила, и железная гиря перевесит.

610. В сосуде три жидкости: слегка подкрашенная вода, растворитель (четыреххлористый углерод) и керосин. Укажите на порядок расположения этих жидкостей. (Плотность растворителя 1595 кг/м3.)
Снизу вверх: четыреххлористый углерод, вода, керосин.

611. Почему горящий керосин нельзя тушить водой?
Потому что вода будет опускаться вниз и не будет закрывать доступ воздуха (необходимого для горения) к керосину.

612. На дне сосуда с водой лежат одинаковой массы шары: чугунный и железный. Одинаковое ли давление на дно сосуда производят эти шары?
Сила давления, оказываемая чугунным шаром, будет меньше, так как на него будет действовать большая выталкивающая сила, так как плотность чугуна меньше плотности железа. Если площади соприкосновения с дном одинаковы, то давление, оказываемое железным шаром, будет больше.

613. На поверхности воды плавают бруски из дерева, пробки и льда (рис. 185). Укажите, какой брусок пробковый, а какой из льда.
3 — брусок из пробки, 1 — брусок изо льда, так как плотность пробки наименьшая из заданных веществ, льда — наибольшая.

614. Березовый и пробковый шарики равного объема плавают на воде. Какой из них глубже погружен в воду? Почему?
Так как плотность березового шарика больше плотности пробкового, то он глубже будет погружен в воду.

615. Для отделения зерен ржи от ядовитых рожков спорыньи их смесь высыпают в воду. Зерна ржи и спорыньи в ней тонут. Затем в воду добавляют соль. Рожки начинают всплывать, а рожь остается на дне. Объясните это явление.
Объясняется это явление тем, что плотность рожков спорыньи меньше плотности соленой воды, а плотность ржи — больше.

616. В сосуд, содержащий воду, керосин и жидкий растворитель (четыреххлористый углерод, плотность которого равна 1595 кг/м3), опущены три шарика: парафиновый, пробковый и стеклянный. Как расположены шарики?
Пробковый шарик будет плавать на поверхности керосина, парафиновый — на границе вода — керосин, а стеклянный покоиться на дне сосуда.

617. В сосуде с водой (при комнатной температуре) плавает пробирка (рис. 186). Останется ли пробирка на такой же глубине, если воду слегка подогреть; охладить? (Увеличение объема пробирки при нагревании и охлаждении не учитывать. Охлаждение производить при температуре не ниже 4 °С.)
При нагревании воды пробирка начнет двигаться вниз, при охлаждении — вверх. Объясняется это тем, что плотность воды при нагревании уменьшается, а при охлаждении возрастает.

618. В сосуд с водой опущены три одинаковые пробирки с жидкостью (рис. 187). На какую из пробирок действует наибольшая выталкивающая сила? (Плотность воды на всей глубине считать одинаковой.) Ответ обоснуйте.
На вторую и третью пробирки действуют одинаковые по величине выталкивающие силы, равные весу вытесненной ими воды. На первую пробирку действует меньшая выталкивающая сила, так как вес вытесненной ей воды меньше, чем вес воды, вытесненной второй или третьей пробиркой.

619. На рисунке 188 изображен поплавок, который можно использовать как весы. Объясните, как действуют такие весы.
Поплавок будет погружаться в воду пропорционально нагружаемому весу. Поэтому его можно использовать как весы.

620. Пробирка, в которой находится брусок пластилина, плавает в воде (рис. 189, а). Изменится ли глубина погружения пробирки в воду, если пластилин вынуть и подклеить ко дну (рис. 189, 6)1 Если изменится, то как? Ответ объясните.
Глубина погружения пробирки не изменится, так как по-прежнему будет вытесняться количество воды, равное весу пробирки и пластилина. Если же пластилин отвалится и утонет, то глубина погружения пробирки уменьшится.

621. Стальной брусок подвешен к пружине и опущен в воду (рис. 190). С одинаковой ли силой давит вода на верхнюю и нижнюю поверхности бруска? Ответ обоснуйте.
Давление на нижнюю поверхность бруска будет больше, чем на верхнюю. Поэтому и сила давления на нижнюю поверхность бруска будет больше.

622. Подвешенный на нити стальной брусок погружен в воду (рис. 190). Назовите взаимодействующие тела и силы, действующие на брусок. Изобразите эти силы графически.
Брусок взаимодействует с Землей, пружиной и водой. Силы, действующие на брусок: сила тяжести, направленная вниз; сила Архимеда и сила упругости нити, направленные вверх. Сила тяжести равна по модулю сумме сил Архимеда и упругости нити.

623. Деревянный шар плавает на воде (рис. 191). Назовите силы, действующие на шар. Изобразите эти силы графически.
На шар действуют сила тяжести, направленная вниз, и сила Архимеда, направленная вниз. Сила тяжести равна по модулю силе Архимеда.

624. Стальной брусок, вес которого 15,6 Н, погрузили в воду (рис. 190). Определите значение и направление силы натяжения пружины.

625. Вычислите выталкивающую силу, действующую на гранитную глыбу, которая при полном погружении в воду вытесняет ее некоторую часть. Объем вытесненной воды равен 0,8 м3.

626. Железобетонная плита размером 3,5×1,5×0,2 м полностью погружена в воду. Вычислите архимедову силу, действующую на плиту.

627. Железобетонная плита размером 4×0,3×0,25 м погружена в воду на половину своего объема. Какова архимедова сила, действующая на нее?

628. Один брусок имеет размер 2x5x10 см, а соответствующий размер другого бруска в 10 раз больше (0,2×0,5×1 м). Вычислите, чему будут равны архимедовы силы, действующие на эти бруски при полном погружении их в пресную воду, в керосин.

629. Плавающий на воде деревянный брусок вытесняет воду объемом 0,72 м3, а будучи погруженным в воду целиком — 0,9 м3. Определите выталкивающие силы, действующие на брусок. Объясните, почему различны эти силы.

630. Определите показания пружинных весов при взвешивании в воде тел объемом 100 см3 из алюминия, железа, меди, свинца.

631. Определите, что покажут пружинные весы, если тела объемом 100 см3 из алюминия, железа, свинца взвешивать в керосине.

632. Чему равна архимедова сила, действующая в воде на тела объемом 125 см3 из стекла, пробки, алюминия, свинца?

633. Пробирку поместили в мензурку с водой. Уровень воды при этом повысился от деления 100 см3 до деления 120 см3. Сколько весит пробирка, плавающая в воде?

634. На сколько гранитный булыжник объемом 0,004 м3 будет легче в воде, чем в воздухе?

635. Какую силу надо приложить, чтобы поднять под водой камень массой 30 кг, объем которого 0,012 м3?

636. Брусок размером 20х 10×5 см может занимать в воде указанные на рисунке 192 положения. Докажите, что на него действует одна и та же выталкивающая сила.
Сила Архимеда равна весу жидкости, вытесненной телом, и не зависит от ориентации тела в жидкости.

637. До какого уровня поднимется вода в мензурке, если в ней будет плавать брусок; шар (рис. 193)?

638. Масса пробкового спасательного круга равна 4,8 кг. Определите подъемную силу этого круга в пресной воде.

639. Какой максимальной подъемной силой обладает плот, сделанный из 10 бревен объемом по 0,6 м3 каждое, если плотность дерева 700 кг/м3?

640. Плот состоит из 12 сухих еловых брусьев. Длина каждого бруса 4 м, ширина 30 см и толщина 25 см. Можно ли на этом плоту переправить через реку автомашину весом 10 кН?

641. Прямоугольная баржа длиной 5 м и шириной 3 м после загрузки осела на 50 см. Определите вес груза, принятого баржей.

642. Судно, погруженное в пресную воду до ватерлинии, вытесняет воду объемом 15 000 м3. Вес судна без груза равен 5 • 106 Н. Чему равен вес груза?

643. После разгрузки баржи ее осадка в реке уменьшилась на 60 см. Определите вес груза, снятого с баржи, если площадь сечения баржи на уровне воды равна 240 м2.

644. Площадь сечения теплохода на уровне воды равна 2000 м2. Сколько нужно добавить груза, чтобы теплоход погрузился в морской воде еще на 1,5 м, считая, что борта его на данном уровне вертикальны?

645. Сколько воды вытесняет плавающий деревянный брус длиной 3 м, шириной 30 см и высотой 20 см? (Плотность дерева 600 кг/м3.)

646. Площадь льдины 8 м2, толщина 25 см. Погрузится ли она целиком в пресную воду, если на нее встанет человек, вес которого равен 600 Н?

647. Какой минимальный объем должна иметь подводная часть надувной лодки массой 7 кг, чтобы удержать на воде юного рыболова, вес которого равен 380 Н?

648. Известно, что масса мраморной плиты равна 40,5 кг. Какую силу надо приложить, чтобы удержать эту плиту в воде?

649. Какую силу надо приложить, чтобы удержать под водой кусок пробкового дерева, масса которого равна 80 г?

650. Плавающее тело вытесняет керосин объемом 120 см3. Какой объем воды будет вытеснять это тело? Определите массу тела.

651. Используя данные рисунка 194, определите плотность камня.

652. Было установлено, что при полном погружении куска меди в керосин вес его уменьшается на 160 Н. Каков объем этого куска меди?

653. На коромысле весов уравновесили два одинаковых сосуда. Нарушится ли равновесие весов, если один сосуд поместить в открытую банку и заполнить ее углекислым газом (рис. 195)?
Равновесие весов нарушится, так как архимедова сила в случае углекислого газа больше, чем в воздухе. Поэтому правый сосуд перевесит.

654. Один из двух одинаковых воздушных шаров заполнили водородом, другой до такого же объема — гелием. Какой из этих шаров обладает большей подъемной силой? Почему?
Большей подъемной силой обладает шар, заполненный водородом, так как плотность водорода меньше плотности гелия.

655. Равны ли массы пятирублёвой монеты и куска пробки, уравновешенные на очень точных и чувствительных весах? Ответ объясните.
Массы пробки и монеты не равны из-за того, что на них действует различная сила Архимеда.

656. Назовите газы, в которых мог бы плавать мыльный пузырь, наполненный воздухом. (Весом пузыря пренебречь.)
Углекислый газ, озон, хлор, аргон, ксенон, криптон, находящиеся при давлении, равном атмосферному.

657. Детский шар объемом 0,003 м3 наполнен водородом. Масса шара с водородом 3,4 г. Какова подъемная сила детского шара?

658. Радиозонд объемом 10 м3 наполнен водородом. Какого веса радиоаппаратуру он может поднять в воздухе, если оболочка его весит 6 Н?

659. Масса снаряжения воздушного шара (оболочки, сетки, корзины) составляет 450 кг. Объем шара 1600 м3. Вычислите, какой подъемной силой будет обладать этот шар при наполнении его водородом, гелием, светильным газом. (Плотность светильного газа 0,4 кг/м3.)

660. Стратостат «СССР», на котором стратонавты поднялись на высоту 19 км, имел объем 24 500 м3. При подъеме в оболочке стратостата было только 3200 м3 водорода. Почему же объем оболочки сделали таким большим?
Объем оболочки стратостата был сделан с большим запасом, поскольку с высотой давление наружного воздуха падает.

kupuk.net

Двойкам нет

На тело, погруженное в жидкость, кроме силы тяжести, действует выталкивающая сила — сила Архимеда. Жидкость давит на все грани тела, но давление это неодинаков. Ведь нижняя грань тела погружена в жидкость больше, чем верхняя, а давление с глубиной возрастает. То есть сила, действующая на нижнюю грань тела, будет больше, чем сила, действующая на верхнюю грань. Поэтому возникает сила, которая пытается вытолкнуть тело из жидкости.

Значение архимедовой силы зависит от плотности жидкости и объема той части тела, которая находится непосредственно в жидкости. Сила Архимеда действует не только в жидкостях, но и в газах.

Закон Архимеда: на тело, погруженное в жидкость или газ, действует выталкивающая сила, равная весу жидкости или газа в объеме тела. Для того чтобы рассчитать силу Архимеда, необходимо перемножить плотность жидкости, объем части тела, погруженное в жидкость, и постоянную величину g.

На тело, которое находится внутри жидкости, действуют две силы: сила тяжести и сила Архимеда. Под действием этих сил тело может двигаться. Существует три условия плавания тел:

  • Если сила тяжести больше архимедовой силы, тело будет тонуть, опускаться на дно.
  • Если сила тяжести равна силе Архимеда, то тело может находиться в равновесии в любой точке жидкости, тело плавает внутри жидкости.
  • Если сила тяжести меньше архимедовой силы, тело будет всплывать, подниматься вверх.
  • Эти условия можно записать для плотности жидкости и тела:

    • Если плотность тела больше плотности жидкости, тело будет тонуть, опускаться на дно.
    • Если плотность тела равна плотности жидкости, то тело может находиться и равновесии в любой точке жидкости, тело плавает внутри жидкости.
    • Если плотность тела меньше плотности жидкости, тело будет всплывать, подниматься вверх.
    • Кит, хотя и живет в воде, но дышит легкими. Несмотря на наличие легких, кит не проживет и часа, если случайно окажется на суше. Сила тяжести, действующая на кита, достигает 90 000-100 000 ньютонов. В воде эта сила уравновешивается выталкивающей силой, а на суше у кита под действием такой огромной силы сжимаются кровеносные сосуды, прекращается дыхание, и он погибает.

      Закон Архимеда используют и для воздухоплавания. Впервые воздушный шар в 1783 году создали братья Монгольфье. В 1852 году француз Жиффар создал дирижабль — управляемый аэростат с воздушным рулем и винтом.

      xn—-7sbfhivhrke5c.xn--p1ai

      Закон архимеда и сила тяжести

      На поверхность твёрдого тела, опущенного в жидкость (газ), действуют силы давления. Эти силы увеличиваются с глубиной погружения, и на нижнюю часть тела будет действовать со стороны жидкости большая сила, чем на верхнюю. Появляется так называемая выталкивающая сила, называемая ещё силой Архимеда.

      Выталкивающая сила – это сумма всех сил, действующих на поверхность погружённого в жидкость тела, со стороны жидкости (рис. 19). Истинная причина появления выталкивающей силы – наличие различного гидростатического давления в разных точках жидкости.

      Для нахождения силы Архимеда мысленно заменим тело жидкостью в объёме тела (рис. 20). Ясно, что выделенный объём жидкости будет неподвижен относительно остальной жидкости. На него со стороны окружающей жидкости будет действовать такая же сила, как и на погружённое тело. Напомним, что эту силу мы назвали выталкивающей. По третьему закону Ньютона, выделенная в объёме тела жидкость (вытесненная телом) будет действовать на окружающую жидкость с той же по модулю, но противоположно направленной силой. Эта сила называется по определению весом вытесненного объёма жидкости. Вспомним, что весом тела неподвижного в некоторой системе отсчёта (не обязательно инерциальной) называется сила, с которой тело действует на подставку или тянет за подвес.

      В нашем случае роль подставки (подвеса) для выделенного объёма жидкости играет окружающая жидкость. Итак,

      выталкивающая сила, действующая на тело, погружённое в жидкость, равна по модулю весу вытесненной жидкости и противоположно ему направлена. Это и есть закон Архимеда.

      Заметим, что в формулировке закона говорится о весе вытесненной жидкости, а не о силе тяжести. И это весьма существенно, т. к. вес тела не всегда совпадает с силой тяжести, действующей на него. Например, ящик массы `m` в кабине поднимающегося вверх с ускорением `a` лифта давит на пол с силой `m(g+a)`. Это значит, что вес ящика будет`Q=m(g+a)`, в то время как сила тяжести, действующая на ящик, будет `mg`.

      Теперь ясно, что выталкивающая сила появляется тогда, когда нет состояния невесомости, т. е. когда любое тело (в том числе и жидкость) имеет вес. Причиной возникновения веса в некоторой системе отсчёта могут быть поле тяжести или наличие ускорения у этой системы отсчёта (по отношению к инерциальной системе отсчёта). Если сосуд с жидкостью свободно падает, то жидкость находится в состоянии невесомости и на погружённое в неё тело сила Архимеда не действует. Не действует эта сила и в космическом корабле, двигатели которого не работают.

      При доказательстве закона Архимеда мы считали, что тело полностью погружено в жидкость и вся поверхность тела соприкасается с жидкостью. Если часть поверхности тела плотно прилегает к стенке или дну сосуда так, что между ними нет прослойки жидкости, то закон Архимеда не применим.

      Яркой иллюстрацией к сказанному служит опыт, когда ровную нижнюю поверхность деревянного кубика натирают парафином и плотно приставляют ко дну сосуда. Затем осторожно наливают воду. Брусок не всплывает, т. к. со стороны воды на него действует сила, прижимающая его ко дну, а не выталкивающая вверх (рис. 21). Известно, что это явление представляет опасность для подводной лодки, лёгшей на грунт.

      Приведённая формулировка закона Архимеда остаётся справедливой и в случае, когда тело плавает в жидкости или частично опущено в неё через свободную, т. е. не соприкасающуюся со стенками сосуда, поверхность жидкости. Доказательство аналогично случаю полностью погружённого в жидкость тела.

      Нам осталось научиться находить вес вытесненной жидкости и линию действия выталкивающей силы. В общем случае это не так легко сделать, что видно на примере погружения тела в жидкость, вращающуюся вместе с сосудом.

      Рассмотрим наиболее простой и часто встречающийся на практике случай. Пусть сосуд с жидкостью неподвижен в некоторой инерциальной системе отсчёта и находится в однородном поле тяжести. Например, кастрюля с водой на столе, озеро в лесу и т. д. Тогда, как известно, вес любого неподвижного тела равен силе тяжести, действующей на тело. Поэтому, вес вытесненной жидкости равен силе тяжести, действующей на неё, а выталкивающая сила равна по модулю этой силе тяжести и противоположно ей направлена. Линия действия выталкивающей силы будет проходить через центр тяжести вытесненного объёма жидкости.

      Действительно, на этот объём жидкости действуют две силы – сила тяжести `mvecg`, приложенная в центре тяжести (ц. т.), и выталкивающая сила `vecF` (рис. 22). Так как выделенный объём жидкости находится в равновесии, то сумма моментов этих двух сил относительно любой оси, проходящей через ц. т., должна быть равна нулю. Момент силы тяжести равен нулю, а значит, и момент выталкивающей силы тоже нуль, т. е. линия действия выталкивающей силы проходит через ц. т. вытесненного объёма жидкости. Так как точку приложения силы можно переносить вдоль линии её действия, то обычно точку приложения выталкивающей силы помещают в ц. т. вытесненной жидкости (т. `C` на рис. 22) и называют эту точку центром давлений, поскольку выталкивающая сила есть сумма всех сил давления со стороны жидкости на поверхность погружённого в неё тела.

      Обратите внимание на то, что ц. т. вытесненного телом объёма жидкости может и не совпадать с ц. т. самого тела. Погрузите полностью в воду, например, кусок льда с вмёрзшим в него стальным болтом.

      Тонкий однородный стержень, укреплённый вверху шарнирно (рис. 23), опущен в воду так, что две трети стержня оказались в воде. Определите плотность материала стержня, считая плотность воды известной.

      На стержень действуют сила тяжести стержня `mvecg`, приложенная в центре стержня, сила Архимеда `vecF`, приложенная в центре давлений, т. е. в центре погружённой в воду части стержня, и сила реакции шарнира, проходящая через т. `A` (на рис. не показана).

      Стержень находится в равновесии. Поэтому сумма моментов относительно оси `A` всех действующих на стержень сил равна нулю. Обозначим угол стержня с вертикалью через `alpha`, а длину стержня через `l`. Имеем:

      `mgl/2 sinalpha-F*2/3 lsinalpha=0`.

      Пусть `S` — площадь поперечного сечения стержня, `rho` — плотность материала стержня, `rho_0=1 «г»//»см»^3` — плотность воды. Тогда масса стержня `m=rholS`, а сила Архимеда `F=rho_0 2/3 lSg`. Из записанных уравнений находим `rho=8/9 rho_0

      phystech.academy

      Закон Архимеда: определение и формула

      Часто научные открытия становятся следствием простой случайности. Но только люди с подготовленным умом могут оценить важность простого совпадения и сделать из него далеко идущие выводы. Именно благодаря цепи случайных событий в физике появился закон Архимеда, объясняющий поведение тел в воде.

      В Сиракузах об Архимеде слагали легенды. Однажды правитель этого славного города усомнился в честности своего ювелира. В короне, изготовленной для правителя, должно было содержаться определенное количество золота. Проверить этот факт поручили Архимеду.

      Архимед установил, что в воздухе и в воде тела имеют разный вес, причем разность прямо пропорциональна плотности измеряемого тела. Измерив вес короны в воздухе и в воде, и проведя аналогичный опыт с целым куском золота, Архимед доказал, что в изготовленной короне существовала примесь более легкого металла. По преданию, Архимед сделал это открытие в ванне, наблюдая за выплеснувшейся водой. Что стало дальше с нечестным ювелиром, история умалчивает, но умозаключение сиракузского ученого легло в основу одного из важнейших законов физики, который известен нам, как закон Архимеда.

      Формулировка

      Результаты своих опытов Архимед изложил в труде «О плавающих телах», который, к сожалению, дошел до наших дней лишь в виде отрывков. Современная физика закон Архимеда описывает, как совокупную силу, действующую на тело, погруженное в жидкость. Выталкивающая сила тела в жидкости направлена вверх; ее абсолютная величина равна весу вытесненной жидкости.

      Действие жидкостей и газов на погруженное тело

      Любой предмет, погруженный в жидкость, испытывает на себе силы давления. В каждой точке поверхности тела данные силы направлены перпендикулярно поверхности тела. Если бы эти они были одинаковы, тело испытывало бы только сжатие. Но силы давления увеличиваются пропорционально глубине, поэтому нижняя поверхность тела испытывает больше сжатие, чем верхняя. Можно рассмотреть и сложить все силы, действующие на тело в воде. Итоговый вектор их направления будет устремлен вверх, происходит выталкивание тела из жидкости. Величину этих сил определяет закон Архимеда. Плавание тел всецело основывается на этом законе и на различных следствиях из него. Архимедовы силы действуют и в газах. Именно благодаря этим силам выталкивания в небе летают дирижабли и воздушные шары: благодаря воздухоизмещению они становятся легче воздуха.

      Физическая формула

      Наглядно силу Архимеда можно продемонстрировать простым взвешиванием. Взвешивая учебную гирю в вакууме, в воздухе и в воде можно видеть, что вес ее существенно меняется. В вакууме вес гири один, в воздухе – чуть ниже, а в воде – еще ниже.

      Если принять вес тела в вакууме за Ро, то его вес в воздушной среде может быть описан такой формулой: Рво — Fа;

      здесь Ро – вес в вакууме;

      Fа — сила Архимеда.

      Как видно из рисунка, любые действия со взвешиванием в воде значительно облегчают тело, поэтому в таких случаях сила Архимеда обязательно должна учитываться.

      Для воздуха эта разность ничтожна, поэтому обычно вес тела, погруженного в воздушную среду, описывается стандартной формулой.

      Плотность среды и сила Архимеда

      Анализируя простейшие опыты с весом тела в различных средах, можно прийти к выводу, что вес тела в различных средах зависит от массы объекта и плотности среды погружения. Причем чем плотнее среда, тем больше сила Архимеда. Закон Архимеда увязал эту зависимость и плотность жидкости или газа отражается в его итоговой формуле. Что же еще влияет на данную силу? Другими словами, от каких характеристик зависит закон Архимеда?

      Архимедову силу и силы, которые на нее влияют, можно определить при помощи простых логических умозаключений. Предположим, что тело определенного объема, погруженное в жидкость, состоит из тоже же самой жидкости, в которую оно погружено. Это предположение не противоречит никаким другим предпосылкам. Ведь силы, действующие на тело, никоим образом не зависят от плотности этого тела. В этом случае тело, скорее всего, будет находиться в равновесии, а сила выталкивания будет компенсироваться силой тяжести.

      Таким образом, равновесие тела в воде будет описываться так.

      Но сила тяжести, из условия, равна весу жидкости, которую она вытесняет: масса жидкости равна произведению плотности на объём. Подставляя известные величины, можно узнать вес тела в жидкости. Этот параметр описывается в виде ρV * g.

      Подставляя известные значения, получаем:

      Это и есть закон Архимеда.

      Формула, выведенная нами, описывает плотность, как плотность исследуемого тела. Но в начальных условиях было указано, что плотность тела идентична плотности окружающей его жидкости. Таким образом, в данную формулу можно смело подставлять значение плотности жидкости. Визуальное наблюдение, согласно которому в более плотной среде сила выталкивания больше, получило теоретическое обоснование.

      Применение закона Архимеда

      Первые опыты, демонстрирующие закон Архимеда, известны еще со школьной скамьи. Металлическая пластинка тонет в воде, но, сложенная в виде коробочки, может не только удерживаться на плаву, но и нести на себе определенный груз. Это правило — важнейший вывод из правила Архимеда, оно определяет возможность построения речных и морских судов с учетом их максимальной вместимости (водоизмещения). Ведь плотность морской и пресной воды различна и суда, и подводные лодки должны учитывать перепады этого параметра при вхождении в устья рек. Неправильный расчет может привести к катастрофе – судно сядет на мель, и для его подъема потребуются значительные усилия.

      Закон Архимеда необходим и подводникам. Дело в том, что плотность морской воды меняет свое значение в зависимости от глубины погружения. Правильный расчет плотности позволит подводникам правильно рассчитать давление воздуха внутри скафандра, что повлияет на маневренность водолаза и обеспечит его безопасное погружение и всплытие. Закон Архимеда должен учитываться также и при глубоководном бурении, огромные буровые вышки теряют до 50% своего веса, что делает их транспортировку и эксплуатацию менее затратным мероприятием.

      www.syl.ru

      Это интересно:

      • Заявление уфмс воронеж Отдел УФМС России по Воронежской области в Коминтерновском районе г. Воронежа Руководство Управления Начальник Викулина Ирина Викторовна Старший инспектор Филимонцева Лариса Петровна График работы по приему населения Прием: Понедельник: 18.00 - 19.45 Вторник: 14.00 - 16.00 Четверг: 14.00 […]
      • Вычет по подоходному налогу на строительство Имущественный вычет по подоходному налогу Вы можете добавить тему в список избранных и подписаться на уведомления по почте. Добрый день! Подскажите, пожалуйста по документам, которые работник должен предоставить в бухгалтерию для применения ему имущественного вычета по подоходному налогу […]
      • Смеситель гарантия по закону Какой срок гарантии на сантехнику? ДЕНЬ ДОБРЫЙ!ТАК КАКОЙ ЖЕ СРОК ГАРАНТИИ НА САНТЕХНИЧЕСКИЕ СМЕСИТЕЛИ!?А КОНКРЕТНО НА ГУСАК ОТ СМЕСИТЕЛЯ!? Ответы юристов (1) В соответствии со ст. 5 Закона РФ «О защите прав потребителей»: 1. На товар (работу), предназначенный для длительного […]
      • Документы для развода образец Иск на развод с детьми (образец) Задайте вопрос юристу бесплатно! Кратко опишите в форме вашу проблему, юрист БЕСПЛАТНО подготовит ответ и перезвонит в течение 5 минут! Решим любой вопрос! Все данные будут переданы по защищенному каналу Развод при наличии общих несовершеннолетних […]
      • Заполнение декларации по усн при ликвидации Заполнение декларации по УСН при ликвидации организации Добрый день!Нужно дублировать цифры. На титульном листе Вы поставите код налогового периода 50 "Последний налоговый период при ликвидации организации" и период прекращения деятельности 23 (3 квартал).Согласно Порядка […]
      • Закон о тишине вологодская область Закон о тишине вологодская область от 28 января 2013 года N 2973-оз Об обеспечении покоя граждан и тишины в ночное время в Вологодской области ПринятПостановлениемЗаконодательного СобранияВологодской областиот 23 января 2013 г. N 15 Статья 1. Ночное время Статья 1. Ночное время В […]
      • Меры наказания в армии Наказания в армии (31 фото) Жесть. Комментарии модерируются! Он же «конверт». Солдата связывают в неудобных позах. Например, пытаемый ложится на живот, руки и ноги подтягиваются и связываются за спиной. Практикуется также связывание в позе лягушки. Применяется […]
      • Статьи ук попадающие под амнистию 2018 Какие статьи попадают под амнистию 2018 Амнистия в 2018 году в России в честь 100 лет революции Читайте также: Коксаки в Турции 2018 как не заразиться, в каких отелях, последние новости 18. Новости амнистия 2018 в России подробно на г Подробные данные на 27.09.2018 г. Доброго вам […]